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ABSTRACT A convolutional neural network (CNN)-based method for predicting the mechanical properties
of hot rolled steel using chemical composition and process parameters is proposed. The novel contribution
of this research is to introduce the prediction method of CNN into the steel properties prediction field by
converting the production data into two-dimensional data images. Compared with the traditional artificial
neural network method, the CNN adopts the idea of local connection and weight sharing, which reduces the
complexity of the network model, and uses convolution and pooling operations to extract local features
for better prediction precision. The experiments in this paper show that the proposed CNN model with
the optimal structure provides higher prediction accuracy and higher robustness when compared with other
prediction model reported in the literature. Finally, the metallurgical phenomena in the steel rolling processes
are verified by sensitivity analysis using the proposed CNN model. The results are consistent with the
metallurgical properties of the steel materials used in the experiments. Therefore, the proposed CNN model
has a guiding significance in predicting the mechanical properties of hot rolled steel products in practical
applications.

INDEX TERMS Convolutional neural network, mechanical property prediction, deep learning, hot rolled
alloy steel.

I. INTRODUCTION
Hot rolled alloy steel has been widely used in many industrial
fields, including construction, bridges, highways, automo-
tive industries, construction machinery, and so on. Since the
reliability of these industrial products relies on the good
mechanical properties, it is important to predict the mechan-
ical properties of alloy steel accurately which are tensile
strength (TS), yield strength (YS) and elongation (EL).
Research on the mechanical properties prediction has great
significance for reducing the sampling cost of alloy steel and
improving product quality.

The mechanical properties of alloy steel are mainly related
to chemical composition and the process parameters on the
hot rolling processes [1]–[4]. However, the rolling process is
a complex and dynamic nonlinearity system, it is extremely
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difficult to express the relationships mathematically [5], [6].
In previous studies, scholars have tried to use metallurgi-
cal mechanism models and statistical models to predict the
mechanical properties [7]. Although the metallurgical mech-
anism model has a good theoretical basis and is suitable for
most rolling processes, the model structure is very compli-
cated and it needs to have a meticulous metallurgical under-
standing and cumbersome calculation or even experimental
tests that are both time-consuming and expensive [8]. Due to
the complexity and dynamic in steel manufacturing process,
the statistical method of multivariate regression also cannot
meet the requirement of accuracy [9].

In the past decades, Artificial Neural Network (ANN) and
Support Vector Machine (SVM) are the two main meth-
ods to predict the mechanical properties due to the abil-
ity to solve complex nonlinear problems. Chou et al. [10]
proposed a hybrid feedforward ANN with Taguchi parti-
cle swarm to optimize the chemical composition of steel
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bars and improve the mechanical properties. Thankachan
and Sooryaprakash [11] developed a multi-layer feedforward
ANN model that uses the chemical composition of duplex
stainless steel as input to predict the impact energy required
for casting. Wang et al. [12] used chemical composition
and hot rolling processes parameters as input parameters to
predict the mechanical properties of alloy steel using SVM.
The methods based on ANN and SVM can achieve high
precision when the sample data volume is small, but their
prediction effect needs further verification when dealing with
massive data. And when ANN has many hidden layer nodes,
it is easy to overfitting and difficult to converge. With the
development of the steel industry, the processing technologies
are more diversified, the relationships between input param-
eters are more complicated, the ANN and SVM prediction
methods cannot deal with these difficulties. Since CNN can
extract effective features from massive data and use a fewer
number of parameters to construct the complex structure,
it can effectively avoid overfitting and achieve much higher
prediction accuracy than ANN and SVM when processing
massive sample data [13].

In recent years, deep learning is used to solve prediction
problems since it could learn and obtain deeper information
from the raw data [14]. Among different deep neural network
models, CNN can extract local features from complex data
with less sensitive to noise in data, and it can achieve bet-
ter effect and accuracy using fewer parameters using local
connections and weight sharing [15]. Actually, CNN-based
approaches have not only made tremendous progress in
the image recognition [16] and the activity recognition
fields [17], but also become the research hotspot in the fields
of fault detection [18], financial forecasting [19], energy envi-
ronmental protection [20], medical disease prediction [21],
traffic management [22], and bioinformatics [23].

In this paper, a CNN-based method is proposed to pre-
dict the mechanical properties of alloy steel. Firstly, a new
data preprocessing method is proposed to convert chemical
composition and processing parameters into two-dimension
images to extract features. Secondly, a CNN-based model
for predicting mechanical properties is established, and the
hyperparameters are studied to optimize network structure.
Thirdly, our model is compared with the SVM [12] and
Hybrid Artificial Neural Network with Particle Swarm Opti-
mizer [10] approaches on 60,000 industrial data. The experi-
ment results show that the proposed CNN is very promising
in mechanical properties prediction for alloy steel. Finally,
the relative importance of the input variable is evaluated
by sensitivity analysis. This has great guiding significance
for optimizing the chemical composition and the production
processes of steel and developing new steel grades.

The remaining sections complete the presentation of
this paper. Section II introduces the relationships between
mechanical properties with chemical composition and
the production processes. Section III presents the pro-
posed CNN-based prediction method. In the Section IV,

the hyperparameters of CNN structures are optimized
through a series of experiments. The experiment results are
given on more than 60,000 industrial data. Finally, a conclu-
sion is drawn in Section V along with pertinent observations
identified.

II. PROBLEM DESCRIPTION
A. CHEMICAL COMPOSITION OF HOT
ROLLED ALLOY STEEL
Most of the chemical composition of alloy steel consist of
iron (Fe), carbon (C), manganese (Mn), silicon (Si), phos-
phorus (P) and sulfur (S). After reheating, roughing rolling,
finishing rolling, laminar cooling and down coiler, a steel slab
becomes a coil of a thin sheet. The mechanical properties can
be adjusted with different chemical composition or process
parameters.

Complex interactions exist between the chemical compo-
sition and mechanical properties. For example, when the ratio
of C in the steel is below 0.8Wt%, the YS and TS of the steel
increase dramatically with the increases of C content, but the
EL of steel decreases [24]. Furthermore, the content of S and
P must be strictly controlled. S will reduce the hot worka-
bility and strength of steel and P will reduce the plasticity
and toughness of the steel [25]. Mn has a strong ability of
deoxidation and desulfurization, can greatly improve the hot
workability and strength of steel. In steel production, molten
iron is often mixed with oxygen (O2) and nitrogen (N2),
which is detrimental to the mechanical properties of steel.
For this reason, Mn, Si, aluminum (Al), vanadium (V), tita-
nium (Ti) are often added as deoxidants to the steel [10]. The
combination of Si, molybdenum (Mo), and chromium (Cr)
not only makes the steel highly resistant to oxidation and
corrosion but also enhances the strength and hardness of the
steel. The addition of Al, niobium (Nb), and V to the steel
can reduce the negative effects of N. The copper (Cu) in
steel can improve the strength and toughness and resistance
to atmospheric corrosion of steel. Boron(B) can improve the
compactness and hot rolling properties of steel. Nickel (Ni)
not only can significantly increase the strength and toughness
of steel, Ni and Cr are also the main alloying elements of
stainless steel [26].

FIGURE 1. Hot rolled processing of alloy steel.

B. HOT ROLLED PROCESSING OF ALLOY STEEL
The hot rolled processing of steel slab can be divided into
five steps, reheating, roughing rolling, finishing rolling, lam-
inar cooling, and down coiling, as shown in Fig. 1. Firstly,
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the steel slab is reheated in furnace to a high temperature
about 1100◦ to 1250◦. Secondly, the hot steel slab is transfer
to edger mill and roughing mill to reduce the width and
thickness. The steel slab would become longer and thinner.
Thirdly, the steel slab will pass through the finishing mill to
control the thickness with high precision. Fourthly, the steel
strip will pass through the laminar cooling region to reduce
the temperature quickly. Finally, the steel strip is coiled by
the down coiler.

In fact, a series of complex microstructure changes occur
in the manufacturing processes, which could determine the
mechanical properties of the alloy steel. First, the reheating
process provides a uniform temperature to the slab to pro-
vide a uniform initial austenite grain size Then, the rough-
ing and finishing processes refine austenite by dynamic and
static recrystallization. Furthermore, the steel sheet is con-
tinuously cooled by the laminar cooling system for refining
transformed ferrite and pearlite grain [27]. The size and
volume fraction of these grains determine the mechanical
properties of the steel. These heat treatment temperatures
play an important role in mechanical properties prediction.
Therefore, the furnace temperature (FT), the roughing rolling
temperature (RRT), the finishing rolling temperature (FRT)
and the coiling temperature (CT) have a significant influence
on the mechanical properties of hot rolled steel.

FIGURE 2. Relationship between tensile strength, yield strength and
elongation of alloy steel.

C. MECHANICAL PROPERTIES OF
HOT ROLLED ALLOY STEEL
The mechanical properties of alloy steel are TS, YS, and EL.
TS is defined as the maximum tensile stress that the steel
can withstand before breaking, and the YS is defined as
the maximum stress of the steel can withstand before plas-
tic deformation begins. EL is defined as the percentage of
stretched length to the original length after the steel is broken.
Fig. 2 shows the relationship between TS, YS, and EL of alloy
steel.

III. PROPOSED APPROACH
This section describes the proposed prediction method based
on CNN for mechanical properties of hot rolled alloy steel.

First, the data-image converting method is introduced. Then,
the CNN model for predicting the mechanical properties of
the alloy steel is presented.

A. CONVERTING CHEMICAL COMPOSITION AND
PROCESS PARAMETERS INTO IMAGES
The raw data of alloy steel consist of sixteen kinds of chem-
ical compositions and four kinds of heat treatment process
parameters. Our method converts the raw data into a two-
dimensional matrix, and integrates the CNN model features
learning.

Firstly, the raw data is normalized to eliminate the largely
distinct scales in different fields. Let the raw data be X =
(x1, x2, . . . , xi, . . . , x20), the normalization function is shown
as Equation (1).

xi′ =
xi−Min(xi)

Max (xi)−Min(xi)
(1)

where xi′ represents the normalized value of the input param-
eter xi, and Max (xi) and Min(xi) are the maximum and min-
imum values of input parameter xi, respectively.

Then, the normalized data X is treated as a column vec-
tor and multiplied by its own transposition XT to obtain a
production data matrix. In statistics, the data matrix is the
information matrix of the raw data, which contains all the
information of the raw data and can reflect the relative size
of the data variance and covariance. Constructing a two-
dimensional production data informationmatrix canmaintain
the data features and spatial correlations while meeting the
input requirements of the CNN. Let S denote the production
data matrix, which can be expressed as:

S = XXT =



x21 x1x2 x1x3 . . . x1x20
x2x1 x22 x2x3 . . . x2x20
x3x1 x3x2 x23 . . . x3x20
...

...
. . .

...

x19x1 x19x2 x19x3 · · · x19x20
x20x1 x20x2 x20x3 · · · x220


(2)

FIGURE 3. Data-image conversion method.

Finally, the raw data is converted to a two-dimension data
matrix, as a gray pixel image. Fig. 3 illustrates the relations
among the raw data of alloy steel, the production data matrix,
and the gray pixel image.
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FIGURE 4. Structure of CNN-based prediction model for mechanical properties.

B. PROPOSED CNN METHOD FOR STEEL MECHANICAL
PROPERTIES PREDICTION
The proposed CNN-based prediction model is composed
of two parts, feature extraction part and prediction part.
As shown in Fig. 4, the feature extraction part is composed
of an input layer and several feature extractors. The feature
extractor is stacked by convolutional layer, batch normaliza-
tion (BN) operation, nonlinear activation layer, and pooling
layer. Each feature extractor will extract its input features to
get a feature map which will become the input data of the
subsequent feature extractor. The prediction part contains two
fully connected (FC) layers and an output layer. The feature
maps output by the last feature extractor will be transferred
to the FC layers and perform the prediction task. Finally,
the predicted steel mechanical properties value will be output
by the output layer.

The input layer receives the converted two-dimension data
image, and the convolutional layer uses the convolution ker-
nel which consists of a weight matrix with the same size as the
receptive field on the input layer and a bias value to establish
a local connection. As the receptive field slides from the top
left of the input layer to the bottom right, the convolutional
layer obtains the feature map of the input layer filtered by the
convolution kernel, which can be expressed as Equation (3).

yjk = (
F∑
p=1

F∑
q=1

wpqx(p+j∗s)(q+k∗s) + b),

0 ≤ j ≤
H − F
S

, 0 ≤ k ≤
W − F
S

(3)

yjk represents the value of the node positioned at (j, k) on
the feature map, F represents the height and width of the
receptive field, H and W represent the height and width of
the input data, S indicates the stride of the receptive field.
x(p+j∗s)(q+k∗s) represents the input data with the coordinate at
(p + j ∗ s,q + k ∗ s), wpq and b denote the weight located at
(p, q) on the weight matrix and the bias, respectively.
To obtain sufficient characteristics of the mechanical prop-

erties, a set of convolutional kernels are used to perform
the convolution operation. By the convolution operation,

each convolution kernel can get a feature map, and different
nodes on the feature map correspond to different receptive
fields when the convolution kernel sweeps across the input
layer. The connection pattern that each node on the same fea-
ture map connects to its receptive field by the same convolu-
tion kernel is called parameter sharing. The local connection
and the parameter sharing are two important characteristics
of CNN, which can reduce the number of parameters, extract
the features in raw data effectively, and enhance the gener-
alization ability of the model [28]. For the lth convolutional
layer with Pl convolutional kernels, the output can be denoted
as Equation (4).

uil =
∑Pl−1

k=1

(
W i
l x
k
l + b

i
l

)
, i ∈ [1,Pl] (4)

xkl and uil represent the input matrix and output matrix of
the lth layer respectively, where i and k denote the channel
index in the lth convolutional layer and the l-1th convolu-
tional layer, respectively. The weight matrix and bias con-
tained in the kth convolution kernel of the lth convolutional
layer are denoted by W i

l and b
i
l respectively. The size of the

feature mapwill shrink after convolution operation. The zero-
padding method is applied to keep the size of the output
feature map, which centers the output feature map and adds
zero values at all the edges of the output feature map.

BN operation is added after each convolutional layer to
improve training speed and achieve higher prediction accu-
racy, which allows us to be less careful about the initialization
method and use much higher learning rates [29]. First, each
dimension of the input is normalized into a stable distribution
with the mean of zero and variance of one. Then, the normal-
ized value is scaled and shifted by a pair of learnable variables
γ and β to restore the data distribution that should be learned
in the previous layer. The BN operation can be expressed as
Equation (5).

y(k) = γ (k) x
(k)
− E

(
x(k)

)√
Var

(
x(k)

)
+ ε

+ β(k), k ∈ [1,N ] (5)
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where N represents the total dimension of the input, x(k) and
y(k) represent the kth dimension of the input and output of
the layer respectively, E(x(k)) and Var

(
x(k)

)
represent the

mean value and variance of the kth dimension of the input
respectively. A very small real number ε is added, to avoid the
denominator is zero. The learnable variables for scaling and
shifting the normalized value are represented by γ (k) and β(k)

respectively.
Rectified linear unit (ReLU) is applied to the proposed

CNN model as the nonlinear activation function, which
can prevent the vanishing gradient and exploding gradient
problems in the neural network and enhance the training
speed [30]. Let max denote the function to select the larger
value between x and zero, the ReLU activation function can
be indicated as Equation (6).

ReLU(x) = max(x, 0) (6)

In the pooling layer, downsampling is applied to scale
down and concentrate feature map to obtain the most sig-
nificant features in the input feature map. The max-pooling
method is used as the pooling method by selecting the maxi-
mum value in the pooling field.

The information of the concentrated feature maps obtained
from the final pooling layer is transmitted to the prediction
part by flattening the condensed feature maps into a dense
vector. Each node on the first FC layer is connected to the
dense vector and the output is passed to the second FC layer
and finally transmitted to the output layer. The dropout [31]
which can effectively avoid the proposed model from overfit-
ting by randomly selecting some nodes to skip weight updates
in each iteration of training is used at all the FC layers to
enhance the generalization ability of the model.

The predicted value is obtained by using feature extractions
to gain the features from raw data and applying FC layers
to process the feature information. The model output can be
expressed as Equation (7).

ŷ = wfc2σ (wfc1fl(pool(σ (bn(
∑PL−1

k=1

(
W i
Lx

k
L + b

i
L

)
))))

+ bfc1)+ bfc2 (7)

where the weight and the bias of the first FC layer are
denoted by wfc1 and bfc1 respectively, wfc2 and bfc2 are the
weight and the bias of the second FC layer, σ represents
the nonlinear activation function ReLU, fl denotes the flat-
tening operation which flattens features into a dense vector,
pool denotes the max-pooling method, bn denotes the BN
operation, L represents the total number of convolutional
layers, PL−1 denotes the number of convolutional kernels in
the L-1th convolutional layer, the channel index of theLth and
L-1th convolutional layer are denoted by i and k respectively
and xkL represents the input of the Lth layer.

The mean squared error (MSE) is applied as the loss func-
tion to measure the distance between predicted values and
actual values. Minimizing MSE is taken as the training goal
of the proposed model and the minimumMSE is achieved by

continuously adjusting the weight and bias of each neuron.
The MSE can be expressed as Equation (8).

MSE =
1
M

∑M

i=1

(
ŷi − yi

)2 (8)

where ŷi represents the predicted value, yi represents the
actual value, andM represents the sample size in the data sets.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
The structure of the CNN is crucial to the performance of the
prediction model. Small size of filters cannot only achieve
the same effect as the large size but also reduce the number
of parameters, thereby improving the generalization perfor-
mance of the model. The proposed prediction model uses
3∗3 convolutional kernels and 2∗2 pooling fields. The stride
size of the convolutional layer and the pooling layer are set
to 2 in this model, convolutional kernels of the proposed
CNN-based model increase gradually as convolutional layers
increases.

Deep neural network model with too much layers or too
much nodes in hidden layer are not only difficult to converge
but also lead to redundancy in the learned features and overfit
the training set [32]. The hyperparameters setting of CNN is
also important to model performance. Glorot and Bengio [33]
is adopted as theweight initializationmethod, the batch size is
set to 128, and parameters in the CNN model are updated by
Adam optimizer. Referring to the paper of Adam optimiza-
tion algorithm, 0.001 is used as the initial learning rate of
the proposed CNN model. Since the BN operation and the
dropout operation both have regularization effects, the BN
operation is only used in the convolutional layers, the dropout
operation is only used in the FC layers and the dropout rate
is set to 0.4 in the proposed model, which is based on the
solution to deal with the disharmony between dropout and
batch normalization proposed by Li et al. [34].

A. DATA DESCRIPTION
In this study, 60,000 experimental steels are collected from
two hot roll factories in Wuhan and are reprocessed into
cylindrical samples of 8 8mm × 15mm in the laboratory.
The sample conforms to the GB/T700-2006 standard which is
roughly equivalent to ASTMA36, but worse than it, as shown
in Table 1:

Fig. 5(a)-(b) show the microstructure of the specimens
made of the standard experimental slab with the same FT and
different FRT under the optical microscope using standard
metallographic techniques. The Gleeble 1500 CNC dynamic
thermal-mechanical physical simulation machine is used to
simulate the hot rolling experiment, and Axiplan 2 Imaging
Zeiss opticalmicroscope is used to observe themicrostructure
of the sample. Fig. 5(c)-(d) show the tensile fracture morphol-
ogy of two samples of different YS after tensile testing. The
CMT5105 microcomputer controlled electronic tester is used
for tensile testing and the fracture morphology is observed
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TABLE 1. Chinese national standard chemical composition and mechanical properties of experimental steel.

FIGURE 5. Metallographic microstructure of samples with the FT at 1150◦

and different FRT; (a) 830◦, (b) 860◦, tensile fracture morphology of
samples with different YS, (c) 325 MPa, and (d) 345 MPa.

using a Nova 400 NanoSEMfield emission scanning electron
microscope.

In the experiment, 42000 sets of data are randomly selected
as the training set for training the proposed model, 9000
sets of data are randomly selected as the validation set to
determine the network structure and the hyperparameters of
the proposed CNN, the remaining 9,000 sets of data are as
the test set to test the performance of the optimal model. And
to emphasize, the ten-fold cross validation method is used on
the training and validation sets to ensure the robustness of the
results when compared with other methods. Table 2 displays
the data distribution statistics for the minimum, maximum,
average, and standard deviation of all input parameters in the
overall datasets.

The input parameters comprise sixteen kinds of chemical
composition and four kinds of heat treatment parameters.
The output parameters comprise three important mechanical
properties which are TS, YS, and EL.

B. RESULTS OF PROPOSED CNN MODEL
In order to obtain optimal hyperparameters, different number
of depths, width and convolutional kernels are attempted on

TABLE 2. Descriptive statistics of input parameters.

network structure. Four indicators are adopted as the eval-
uation metrics to assess the prediction capability compre-
hensively, such as mean square error (MSE), mean absolute
error (MAE), mean absolute percentage error (MAPE) and
coefficient of determination (R2) [27].
The structures of the model with different depths are illus-

trated in Table 3, where LN denotes the N th convolutional
layer, the number indicates the number of convolution filters.
TS, YS and EL represent the performance of the model in
predicting TS, YS and EL respectively. The only one FC layer
is set to highlight the influence of the convolutional layer
structure on the proposed model, and the number of nodes
is 256. The experiments are performed five times and the
results are averaged. As can be seen from the results that
the Depth-2 achieves the best result. The MSE, MAE, and
MAPE of Depth-2 are all lower than those of other depths
and the R2 of Depth-2 is the highest. This may be because the
Depth-1 model is too small to fully represent the relationship
between the input parameters and the mechanical properties
of steel but the Depth-3 model is too large, which reduces the
generalization ability of the model.
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TABLE 3. Prediction performances of the CNN with different depths.

Table 4 shows the results of models based on Depth-2 but
with different numbers of convolutional kernels and the val-
ues are the average of the five experiments. The results show
that Width-4, Width-3, and Width-2 achieve the best results
for TS, YS, and EL respectively. The model scales ofWidth-4
and Width-3 are similar but the scale of Width-2 is smaller,
which indicates that the impact of the input parameters on
EL is smaller than TS and YS, and using a deeper and larger
convolutional model to predict EL is more likely to produce
overfitting.

Different network structures perform differently when
predicting different mechanical properties. Three different
structures are used to train the network model separately

TABLE 5. Optimal structures of CNN.

to improve accuracy when predicting different mechanical
properties. As shown in Table 5, TS, YS, and EL denote the
different optimal structures of the proposed CNN method for
predicting the TS, YS, and EL, respectively. Conv(3∗3∗64)
denotes a convolutional layer that filter size is 3∗3 and has
64 channels. Maxpool(2∗2) denotes a max-pooling layer with
2∗2 pooling field. FC1 represents the first FC layer, FC2 rep-
resents the second FC layer, and the followed numbers indi-
cate the number of neuron nodes in this FC layer.

Fig. 6(a)-(c) shows that the predicted values of the pro-
posed CNN are in good agreement with the actual values
of TS, YS, and EL on the test set. Fig. 6(d)-(f) shows the
statistical distributions of the percentage errors between the
predicted values of the proposed CNN model and the actual
values on the test datasets. The percentage errors not only
proximately accord with the normal distribution but also are
distributed in the range of -10% to 10%, which proves that
the proposed CNN model has a good prediction performance

The experiment results of the proposed CNN-based model
are compared with SVM [12] and ANN [10] models by

TABLE 4. Prediction performances of the CNN with different widths.
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FIGURE 6. Comparisons of predicted and actual (a) tensile strength, (b) yield strength, (c) elongation and
distributions on percentage errors of (d) tensile strength, (e) yield strength, and (f) elongation.

ten-fold cross validation method on the training and valida-
tion sets and the average are recorded. The comparison results
are shown in Table 6. The SVM uses a radial basis function as
the kernel function, and the ANN uses a single hidden layer
structure and uses particle swarm optimization to optimize it.

It can be seen from the results that the proposed
CNN method obtains competitive results against with SVM

and ANN. For the prediction of TS, although both ANN and
CNN have achieved an MSE of 0.004, the CNN method is
better for other indicators, with MAE, MAPE, and R2 of
the proposed CNN are 0.0113, 0.0218, 0.9835 respectively.
In the case of the prediction of YS, the MSE of CNN and
ANN are both 0.0003, but the MAE and MAPE of the pro-
posed CNN which are 0.0106 and 0.0229 respectively are
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FIGURE 7. Combined effects of (a) C and Mn content on tensile strength, (b) C and Mn content on Elongation, (c) C content and finishing temperature on
tensile strength, (d) C content and finishing temperature on yield strength, (e) C content and coiling temperature on tensile strength, and (f) C content and
coiling temperature on yield strength.

TABLE 6. Prediction performances of the CNN and other algorithms.

both lower than those of SVM and ANN, and the proposed
CNN achieves the best R2 with 0.9904. For the predic-
tion of EL, although the CNN and ANN obtain the same
MSE with 0.0004, the MAE and MAPE of the proposed
CNN are both lower than the other two methods, which
are 0.0116 and 0.0243 respectively, and the highest R2 of
0.9865 is obtained by the CNN method. Therefore, the pro-
posed CNN method has an excellent ability to predict the
mechanical properties of steel and outperforms the other
methods.

C. SENSITIVITY ANALYSIS
The synergistic effects of the input parameters are stud-
ied by changing two input parameters simultaneously and
holding the remaining parameters at their average values.
C has a significant influence on the mechanical properties

of steel, which can enhance the strength of hot rolled alloy
steel by means of interstitial solid solution strengthening.
Mn enhances the strength of steel by stabilizing austenite and
solid solution strengthening, and its strengthening effect is
better as the carbon content increases, but the EL of steel also
decreases as the strength increases. Fig. 7(a)-(b) shows the
combined effects of C and Mn content on the TS and EL of
steel.

FRT and CT are two important processing technology
parameters. Fig. 7(c) shows the combined effect of C content
and FRT on TS, that the TS of the steel increases first and then
decreases with the FRT increases and the effect of the change
of C content on the TS is obvious. The combined effect of C
content and FRT onYS is shown in Fig. 7(d), which illustrates
the YS of the steel decreases first and then increases with
the FRT increases, the FRT has a greater influence on the
YS than the C content, and the YS reaches a maximum of
300.592 MPa when the FRT is 908.120◦C and the carbon
content is 0.18Wt%. Fig. 7(e) demonstrates the effect of C
content and CT on TS, as can be seen from the graph, the TS
of the steel first decreases and then increases with the CT
increases, and when the carbon content is 0.18Wt%, the TS
of the steel increases greatly. Fig. 7(f) shows the effect of C
content and CT on YS, that the YS of the steel first decreases
and then increases with the CT increases, and the CT has
greater influence on the YS than the C content, and when
the CT is 591.650◦C and the carbon content is 0.17Wt%, the
maximum YS is achieved with 303.193 MPa. In summary,
only considering the parameters of C content, FRT, and CT,
the TS is affected more by C content, and the YS is more
affected by the FRT and the CT.
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V. CONCLUSION
In this paper, a CNN based model for predicting the mechan-
ical properties of alloy steel by using sixteen kinds of chem-
ical composition and four kinds of hot rolling production
processes of hot rolled steel is proposed. The raw data is
processed by normalization to keep the data in the same
range, then is converted into an image that the CNN can
process using the proposed data-image conversion method.
Small convolutional kernels and small pooling fields are
used in the proposed CNN model to reduce the number
of parameters and improve the generalization ability of the
model. The BN operation is used to increase the convergence
speed of the model, and the dropout operation is used to
enhance the generalization capability of the model and avoid
overfitting on the training set. The best CNN structures of
predicting TS, YS, and EL are determined by comparison
experiments, and the model prediction results are compared
with the SVM model and the ANN model. The results show
that the prediction accuracy of the proposed CNN model for
predicting hot rolled steel mechanical properties is greatly
improved. Through correlation analysis, it is verified that the
increase of C andMn elements can increase the TS and YS of
steel to a certain extent. For the parameters of carbon content
and processing temperatures, it is verified that the TS is more
affected by the change of carbon content and the YS is more
affected by the FRT and the CT.

The future research works can focus on the following
aspects. First, the standard data set of steel performance pre-
diction can be established to accelerate research progress in
steel field. Second, the metallographic microstructure of steel
can be further studied to predict steel type and mechanical
properties. Finally, themodel can be improved for online steel
mechanical properties prediction.
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