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Abstract. Prediction the mechanical properties is very important in
many real-life industry fields. In this paper, we proposed an efficient
convolutional neural network (CNN) to predict the mechanical proper-
ties of hot roll steel. In this study, 20,000 sets of data are collected from
the hot roll factory, where 16,000 sets of data were used for training
the CNN model, and 4,000 sets of data were used for testing the per-
formance of the model. Compared with Support Vector Machine (SVM)
and Artificial Neural Network (ANN), The experimental results have
been demonstrated to provide a competitive and higher prediction accu-
racy.
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1 Introduction

Hot roll steel is an important material which widely used in many real-life fields.
These areas have different requirement for hot roll steel mechanical properties,
so it is important to predict the mechanical properties of alloy steel accurately
which are tensile strength (TS), yield strength (YS) and elongation (EL).
Traditionally, mechanical properties prediction is carried out by destructive
testing, which is costly and time consuming. As the rolling process is complicated
and final mechanical properties of steel determined by many parameters, includ-
ing the chemical composition and the process parameters [1], it is extremely hard
to express the relationships by mathematical model [2]. In the previous studies,
scholars have widely use metallurgical mechanism models and statistical models
to predict mechanical properties [3]. Due to the complexity and dynamic in steel
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manufacturing process [4], the model structure is needed too many experimental
trials, which increases the cost and production time [5].

In the existing literature, the Artificial Neural Network (ANN) and Support
Vector Machine [6] (SVM) have become widely used to predict the mechanical
properties of hot roll steel. Liang et al. [7] used laser-induced breakdown spec-
troscopy combined with support vector machine to classify steel. Chou et al. [§]
used a three-layer feedforward ANN with Taguchi particle swarm to optimize
the chemical composition of steel bars and improve the mechanical properties.
The methods based on ANN and SVM can demonstrate good performance when
the data set is small, but they cannot achieve high precision when dealing with
massive data. With the development of the steel industry, the processing is more
complex, the relationship between input parameters and mechanical properties
is more complicated, those methods might be powerless.

Recently, deep learning [9] has made a major breakthrough in the field of
machine learning, especially CNN has demonstrated strong performance in the
field of image recognition [10]. It uses the local connection and weight sharing
to reduce the number of parameters, not only to extract local features from
complex data but also to be insensitive to noise and has good model expression
ability [11]. Based on these advantages of CNN, we consider that it can be used
to solve hot roll steel mechanical properties prediction problem.

In this paper, a CNN-based method is proposed to predict the mechani-
cal properties of hot roll steel. This method represents chemical composition
and processing parameters as one-dimensional vector, and employs CNN-based
model to extract features contained by the vector. The rest of the paper is orga-
nized as follows. Section 2 introduces the problem considered in this research.
Section 3 presents the proposed one-dimensional CNN-based method. Section 4
describes the experimental settings. Section 5 concludes the study.

2 Background

2.1 Hot Rolled Processing

The hot rolled processing is one of the parameters affecting the mechanical prop-
erties. As shown in Fig. 1, after reheating, roughing rolling, finishing rolling,
laminar cooling and down coiling, the steel slab becomes a coil of a thin sheet.
In the manufacturing processes, a series of complex microstructure have been
changed. First, reheating process provide uniform austenite grain. Then, the
roughing and finishing processes refine austenite by dynamic and static recrys-
tallization. These grains determine the mechanical properties of the steel. In this
process, the furnace temperature (FT), the roughing rolling temperature (RRT),
the finishing rolling temperature (FRT) and the coiling temperature (CT) have
the greatest influence on the mechanical properties of hot roll steel. According
to China High Strength Low Alloy Structural Steel Standard GB/T1591-20608,
most of the chemical components of alloy steel consist of carbon (C), manganese
(Mn), silicon (Si), phosphorus (P) and sulfur (S). The effects of chemical compo-
sition on mechanical properties is another important parameter. The additions of
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Fig. 1. Hot rolled processing.

some alloying elements affect ferrite transformation and change the mechanical
properties of alloy steel [12]. The presence of microalloying elements generally
control the grain size and have a significant impact on the strength. These mech-
anisms can be very complicated. For example, the major chemical component of
steel bar is carbon, which determines mechanical strength [13]. When the ratio
of C in the steel is below 0.8Wt%, the YS and TS of the steel increase dramati-
cally with the increases of C content, but the EL of steel decreases. S will reduce
the hot workability and strength of steel and P will reduce the plasticity and
toughness of the steel [14].

2.2 Mechanical Properties of Hot Roll Steel

The mechanical properties of alloy steel are TS, YS, and EL. TS is defined as the
maximum tensile stress that the steel can withstand before breaking, and the
YS is defined as the maximum stress of the steel can withstand before plastic
deformation begins. EL is defined as the percentage of stretched length to the
original length after the steel is broken. Figure 2 shows how the YP, TS and EL
of hot roll steel are related.

Chemical elements and processes together determine the mechanical prop-
erties of steel, the different combination of chemical components and processes
parameters complicate those properties. It is difficult to express the relationship.
An efficient method of predicting mechanical properties is needed.

3 Proposed Algorithm

This section introduces the proposed prediction method based on CNN for
mechanical properties of hot roll steel.

3.1 CNN Prediction Model

CNN is widely used in the field of images, and the input to the network is
a two-dimensional matrix at most. In order to adapt to the one-dimensional
characteristic of hot rolled steel data, one-dimensional CNN-based architecture
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Fig. 2. Relationship between tensile strength, yield strength and elongation of hot roll
steel.

is used which applies 1D arrays instead of 2D matrices for both kernels and
feature maps.

As shown in Fig. 3, this model consists of three parts, model input, feature
extraction part, prediction part. Each of the parts is explained below. The fea-
ture extraction is composed of several feature extractors, which is stacked by
convolutional layer, batch normalization, nonlinear activation and pooling layer.
The prediction part contains two fully connected (FC) layers. The predicted
value will be output in the final layer.

Feature extraction
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Fig. 3. Structure of CNN-based prediction model for mechanical properties.

First, model input includes 16 chemical compositions and 4 heat treat-
ment process parameters. In order to eliminate the largely distinct scales in
different fields, the raw data need to be normalized. If the raw data is X =
(x1,22,23...Tpn_1,%y), the normalization equation is:
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. r — min
T = max — min (1)

where z; is the normalized value of the input parameter x;, and min and max
are the minimum and maximum values in the data samples respectively.

Second, the feature extraction part is combination of convolutional layer,
batch normalization, nonlinear activation layer and pooling layer.

The convolutional layer is the core part of the CNN model. It consists of a
set of linear filters that convolute the input data. The convolution operation is
as shown in the formula:

(hk)ij = (W = 37)¢j + bij (2)

where k is the index of the kth feature map in the convolutional layer, (i,j) is
the index of the pixel point, x is the input data, and W and b are the weight
parameter and the offset parameter of the kth feature map, respectively. (hx);
is the output value of the kth feature map. And in one-dimensional convolution,
j is usually set to 1.

Batch Normalization [15] is added after each convolutional layer, which can
speed up the training of the network and avoid gradient explosion. First, the
distribution of the input data is normalized to a distribution with the mean of
0 and variance of 1, as follows:

(k) —

(3)

where (%) represents the kth dimension of the input data, F(z*) represents the
average of the dimension, and /Var (z*) + € represents the standard deviation.
Then set two learnable variables v and 3, and use these two learnable variables
to restore the data distribution learned from the previous layer, as follows:

y(k) — ,yki(k) + ﬁ(k) (4)

Rectified linear unit (ReLU) is used as the nonlinear activation function,
which can prevent the problem of gradient vanished and gradient explosion in
the neural network during training. Let max denote the function to select the
larger value between x and zero, the ReLLU activation function can be expressed
as:

Relu(z) = max(0, x) (5)

The pooling layer is a down-sampling layer, which can not only reduce the
network scale of the CNN, but also identify the most prominent features of input
layers. The maxpooling method is used in the proposed CNN model by selecting
the maximum value in the pooling field.

Finally, the predicted value is obtained by feature extractions part to gain
the features from raw data and applying fully connected layers to process the
feature information.
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3.2 CNN Optimization and Evaluation Metric

The prediction of the CNN are the mechanical properties of hot roll steel, and
the mean squared error (MSE) is employed to measure the distance between
predictions and actual mechanical properties. Thus, minimizing MSE is taken
as the loss function of the CNN. MSE can be written as:

N

MSE = % Z (9 — yz’)z (6)
=1

where 1j; represents the predicted value, y; represents the actual value, and N

represents the number of samples in the data set.

Four indicators are adopted as the evaluation metrics to assess the predic-
tion capability comprehensively. Mean square error (MSE), mean absolute error
(MAE), mean absolute percentage error (MAPE) and coefficient of determina-
tion (R?) are used as evaluation of the model. MAE represents the average of
the absolute error, MAPE is a measure of prediction accuracy of a forecasting
method. R? explains how much of the variability of a factor can be caused or

explained by its relationship to another factor.

4 Results and Discussions

This section consists of two part. First, the experimental steel data is intro-
duced. Second, experiments are performed to demonstrate that the proposed
CNN model can predict for mechanical properties, and its training results are
compared with Artificial Neural Network (ANN) methods, and Support Vector
Machine (SVM).

4.1 Data Description

In this paper, 20,000 sets of data are collected from the hot roll factory, where
16,000 sets of data were used for training the CNN model, and 4,000 sets of data
were used for testing the performance of the model. The data is shown in the
Table 1 below. The input data consists of sixteen chemical components and four
hot roll process parameters. The output consists of three mechanical properties
including TS, YS and EL.

4.2 Comparison Results

In order to test the performance of the proposed algorithm, ANN and SVM
are chosen for comparison. ANN represents the traditional neural network and
attempts to learn features through hidden layers. SVM find a hyperplane to
divide the sample space of the data set into different samples. From Table 2,
compared with the SVM and ANN methods, the proposed CNN model has
achieved good results, and the evaluation metric on the test set are better than
the other two algorithms. This shows that the proposed CNN model can effec-
tively extract the features that affect the mechanical properties of hot rolled
steel and has good generalization ability.
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Table 1. Steel dataset.

Parameter | Unit | Minimum | Maximum | Mean

C Wt% | 0.0051 0.1936 0.149
Mn Wt% | 0.2362 1.3696 0.4674
Si Wt% | 0.0063 0.2994 0.1944
P Wt% | 0.0062 0.0364 0.0172
S Wt% | 0.0012 0.025 0.013
Cu Wt% | 0.0124 0.0826 0.0405
Al Wt% | 0.0003 0.5654 0.0067
Als Wt% | 0.0002 0.5652 0.0059
Ni Wt% | 0.0012 0.0673 0.0168
Cr Wt% | 0.0082 0.0942 0.0296
Ti Wt% | 0.0001 0.0691 0.0015
Mo Wt% | 0.0012 0.0184 0.0053
A% Wt% | 0.0012 0.0056 0.0014
Nb Wt% | 0.001 0.0194 0.0011
N Wt% | 0.0008 0.0653 0.003
B Wt% | 0.0004 0.0031 0.0002
FT °C 1188 1291 1242.6607
RRT °C 976 1142 1049.3915
FRT °C 200 1056 752.5484
cT °C 630 934 774.2208

4.3 Hyperparameters Optimization

The hyperparameters are the important factors that should be considered cau-
tiously which include convolutional kernels size, polling size and depth of the
CNN, when implementing the structure of a CNN.

First, there is no rules for the selection of hyperparameters generally. Based
on the parameter settings of VGG Net, which has achieved second place in the
2014 ILSVRC, we select convolutional filter of size (3,1) and max pooling of size
(2,1). Xavier is adopted as the weight initialization method, the batch size is set
to 128, and parameters in the CNN model are updated by Adam optimizer. The
initial learning rate of the proposed CNN model is set as 0.001.

Second, the depth of the CNN should not be too big or too small, which can
make the model difficult to converge or overfit. The structure of are shown in
Table 3, where each convolutional layer is followed by a pooling layer, and the
numbers represent quantities of convolutional filters in the layer. Table 4 shows
the results of the CNN with different number of depths, TS, YS and EL represent
the three mechanical performance predicted by the model. The Depth-2 achieves
the best result. When the depth is too small, the relationship between the input
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Table 2. Prediction performances of the CNN and other algorithms.

Predicting | Evaluation  CNN | SVM | ANN
TS MSE 0.0032  0.0071 | 0.0032
MAE 0.0231 | 0.0312 | 0.0221
MAPE 0.0612 | 0.0731 | 0.0693
R? 0.8281 | 0.792 | 0.8262
YS MSE 0.0015 | 0.0032 | 0.002
MAE 0.0116 | 0.0129 | 0.0123
MAPE 0.0453  0.0488 | 0.0441
R? 0.9025 | 0.8299  0.8519
EL MSE 0.0015 | 0.0032 | 0.002
MAE 0.0116  0.0129 | 0.0123
MAPE 0.0453 | 0.0488 | 0.0441
R? 0.9025 | 0.8299  0.8519

and the output cannot be completely extracted and when the depth is too large,
the model shows poor generalization ability.

Table 3. Different depths for CNN.

Depth | Structures of CNN Model
Depth-1 | 32 conv— 64 conv

Depth-2 | 32 conv —64 conv—128 conv

Depth-3 | 32 conv —64 conv —128 conv —256 conv

The details of the depth-2 CNN are listed in Table 5. It contains three convo-
lutional layers, three pooling layers and two fully-connected layers. FC1 represent
the first FC layer, FC2 represent the second FC layer, and the followed numbers
indicate the number of neuron nodes in the FC layer. The denotation of Filter
(3*1*64) means that it is a convolutional layer which filter size is 3*1 with 64
channels. Maxpool (2*1) denotes that it is a maxpooling layer with a 2*1 pooling
field.

Figure 4 shows the actual values on the test set and the predicted values of
the proposed CNN model by scatter diagrams of TS, YS and EL. These values
are normalized so they are only in the range of 0 to 1.
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Table 4. Results of CNN in different depths.

Depth | Evaluation | TS YS EL
Depth-1 | MSE 0.0061 |0.0025 | 0.0035
MAE 0.0525 | 0.0302 | 0.0578
MAPE 0.0921 |0.0976 | 0.1132
R? 0.6241 |0.8556 | 0.7921
Depth-2 | MSE 0.0032 | 0.0015 | 0.0023
MAE 0.0231 | 0.0116 | 0.0216
MAPE 0.0712 | 0.0653 0.0618
R? 0.8281 | 0.9025 | 0.8649
Depth-3 | MSE 0.0052 | 0.0032 | 0.0037
MAE 0.0427 |0.0296 | 0.0376
MAPE 0.0834 |0.0876 | 0.1032
R? 0.6724 |0.8667 | 0.801
Table 5. Details of the CNN.
Layer | Name Parameters
L1 Conv Filter(3*1*64)
Pool Maxpool (2*1)
L2 Conv Filter(3*1*128)
Pool Maxpool (2*1)
L3 Conv Filter(3*1*256)
Pool Maxpool (2*1)
FC1 | Fully-connected 1 | 1280
FC2 | Fully-connected 2| 256

o973

The Fig. 4 demonstrates that the predicted values of the proposed model are
in good agreement with the actual mechanical properties, which indicates that

the proposed CNN model

has a good effect.
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Fig. 4. Comparisons of predicted and actual mechanical properties

5 Conclusion

The proposed CNN model can predict the mechanical properties of steel through
sixteen kinds of chemical composition and four kinds of hot rolling production
processes of hot rolled steel. The raw data is processed by normalization to keep
the data in the same range. The best CNN structures in predicting TS, YS, and
EL are determined by comparison experiments, and the model prediction results
are compared with the SVM model and the ANN model. The experimental
results show that our algorithm provides the best accuracy than the traditional
methods on 20,000 hot roll datasets. The results demonstrate the ability of the
proposed CNN-based model to predict the mechanical properties of hot rolled
steel.
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