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Two-Stage Multiobjective Evolution Strategy for
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Kai Zhang , Zhiwei Xu , Graduate Student Member, IEEE, Gary G. Yen , Fellow, IEEE, and Ling Zhang

Abstract—For the past many years, several constrained
multiobjective evolutionary algorithms (CMOEAs) have been
designed for solving constrained multiobjective optimization
problems (CMOPs). In these CMOEAs, some constraint-handling
techniques (CHTs) were proposed to balance the convergence
and constrained satisfaction, however, they still face some seri-
ous challenges, such as premature convergence to the local
optimal region and labor-intensive tuning of parameters for
a specific CMOP. Furthermore, most of the existing CHTs are
derived by solving constrained single-objective optimization. The
information hidden from the feasible nondominated set (FNDS)
has not been fully utilized. This study proposed a novel
parameter-less constraint handling technique, which divides the
entire population into three mutually exclusive subsets dynami-
cally: 1) FNDS; 2) the subset dominated by FNDS; and 3) the
subset not dominated by FNDS. According to the proposed divi-
sion of labor, it is not necessary to balance the convergence and
constrained satisfaction in each subset. To avoid being entrapped
in local optima, the proposed algorithm adopts a two-stage strat-
egy to solve CMOPs. In the first stage, the proposed algorithm
focuses solely on converging toward the unconstrained Pareto
front (PF) without considering the constrained satisfaction. In the
second stage, the FNDS constraint handling technique is adopted
to guide the population converging toward constrained PF effec-
tively. The performance of the proposed algorithm was compared
to that of nine state-of-the-art CMOEAs, and the comparison
results show that the proposed algorithm performs significantly
better on the CF, MW, and LIRCMOP test suites.

Index Terms—Constrained multiobjective evolutionary algo-
rithm (CMOEA), constrained multiobjective optimization
problem (CMOP), evolution strategy.

I. INTRODUCTION

IN THE past many years, several constrained multiobjective
evolutionary algorithms (CMOEAs) have been designed
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Fig. 1. (a) Global and local Pareto optimal solutions. (b) NP(i)
t ≺ P(i)

t ,
however, CV values CV(NP(i)

t ) > CV(P(i)
t ).

to solve constrained multiobjective optimization prob-
lems (CMOPs), which can be formulated as follows:

min f (x) = min
[
f1(x), f2(x), . . . , fM(x)

]T

s.t.

{
gj(x) ≤ 0, j = 1, . . . , J
hk(x) = 0, k = 1, . . . , K

where x ∈ � is the decision vector with N decision variables
xi, i = 1, . . . , N. f (x) ∈ RM is the objective vector with M
objective functions, fi. i = 1, . . . , M. Moreover, � denotes the
decision search space and RM denotes the objective space. For
a multiobjective optimization problem (MOP), a set of non-
dominated optimal solutions, called the Pareto set (PS), and the
corresponding objective vectors, called the Pareto front (PF),
exist. In addition, the optimal solutions for real-world CMOPs
must satisfy J inequality constraints and K equality constraints.
gj(x) is a function of the jth inequality constraint, whereas
hk(x) is a function of the kth equality constraint [1].

In contrast to the unconstrained MOP, solving the CMOP
is slightly different, because it needs to satisfy three cri-
teria simultaneously: 1) constrained satisfaction; 2) good
convergence; and 3) good distribution. In particular, it is diffi-
cult to balance constrained satisfaction and convergence. For
example, some complex CMOPs have many infeasible regions
and local optimal solutions, as shown in Fig. 1.

Let P(i)
t be the ith feasible nondominated individual in popu-

lation Pt, and NP(i)
t be the newly mutated individual. As shown

in Fig. 1(b), the NP(i)
t dominates the original P(i)

t , whereas the
NP(i)

t is located in an infeasible region (displayed on a white
background). Notably, the NP(i)

t has better convergence qual-
ity than P(i)

t , whereas P(i)
t has better constrained satisfaction

than NP(i)
t . Regardless of the constraint handling technique
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Fig. 2. (a) Convergence is preferable, the population is easy to converge to
unstrained PF. (b) Constraint satisfaction is preferable, the population is easy
to trap into local optimal. (c) PF with good distribution. (d) PF with poor
distribution.

applied, when a CMOEA accepts NP(i)
t , the population tends

to converge toward an unconstrained PF, as shown in Fig. 2(a).
If a CMOEA rejects NP(i)

t , the population is easily trapped in
a local optimal, as shown in Fig. 2(b). Ideally, a well-designed
CMOEA should find a set of feasible, well-converged, and
well-distributed nondominated solutions, as shown in Fig. 2(c).
However, many CMOEAs can only obtain solutions with poor
distributions, as shown in Fig. 2(d).

In terms of constraint-handling techniques (CHTs), exist-
ing CMOEAs can be broadly classified into four categories:
1) penalty function approaches [2], [3], [4], [5], [6]; 2) sep-
aration of objectives and constraints approaches [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16]; 3) special representation
and operator approaches [17], [18], [19], [20]; and 4) hybrid
approaches [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40].

First, the penalty function approach attempts to add a con-
straint violation (CV) to the fitness function of an infeasible
individual to render it less desirable, which in turn can convert
a CMOP into an unconstrained MOP. Second, some CMOEAs
tend to handle objectives and constraints separately, such as
the constraint-dominance principle [7], stochastic ranking [9],
and epsilon constraint handling [11]. However, achieving an
ideal balance between convergence and constrained satis-
faction is difficult. Third, special representations and oper-
ators were designed to generate more promising solutions.
Furthermore, the computational cost is always exceedingly
high, and the parameter setting is often excessively sensitive.
Finally, some CMOEAs hybridize multiple CHTs to achieve
better performance than relying on a single CHT alone.
However, existing CMOEAs still face challenges such as
premature convergence to local optimal regions, poor diversity,

and laborious tuning of parameters for a specific CMOP. In
surveying the literature over the last two decades, nearly
all existing CHTs have been derived by solving constrained
single-objective optimization. Therefore, the information hid-
den from the feasible nondominated set (FNDS) has not
been fully exploited for addressing constrained multiobjective
optimization.

In this study, a novel two-stage evolution strategy, CMOES,
is proposed to solve CMOPs. First, a novel parameter-less
constraint handling technique is proposed, which divides the
entire population into three mutually exclusive subsets dynam-
ically: FNDS, the subset dominated by FNDS (FNDS≺), and
the subset not dominated by FNDS (FNDS⊀). Individuals in
each subset are not required to balance constraints and objec-
tives; therefore, different environmental selection strategies are
designed for these subsets. The individuals in subset FNDS≺
are dominated by FNDS, which are targeted to pursue only
better-convergence toward FNDS. By contrast, the individ-
uals in the subset FNDS⊀ are neither FNDS nor FNDS≺,
which are always located in converged infeasible regions.
These infeasible individuals in FNDS⊀ need focus only on
better-constrained satisfaction. The individuals in the subset
FNDS are dedicated to searching for well-converged and well-
distributed feasible solutions. Second, to avoid being trapped
in the local optima, the proposed CMOES adopts a two-stage
strategy to solve the CMOP. In the first stage, the proposed
algorithm focuses on converging to an unconstrained PF with-
out considering constraint satisfaction. In the second stage, the
FNDS CHT is designed to guide the population converging
toward the PF effectively. The performance of the proposed
algorithm was compared with nine state-of-the-art CMOEAs,
and the comparison results clearly show that the proposed
CMOES performs significantly better on the CF, MW, and
LIRCMOP test suites.

In recent years, some CMOEAs, such as PPS [21],
C-TAEA [23], and MOEA/D-DAE [12], also adopted two-
stage or two-population strategy to escape from local
optimal regions. The main difference between CMOES and
these state-of-the-art CMOEAs rests on the CHT. PPS and
MOEA/D-DAE incorporated the epsilon constrained-handling
method [5], while C-TAEA prefers the constraint-dominance
principle (CDP) in the convergence archive. However, these
CMOEAs still encounter difficulties in obtaining well-
converged and well-distributed feasible solutions with existing
CHTs. The experimental results show that the proposed CHT
can provide more competitive performance on the three CMOP
test suites.

The remainder of this article is organized as follows.
Section II presents a comprehensive review of the CMOEAs.
Section III provides details of the proposed FNDS CHT and
the proposed CMOES algorithm. The experimental results
of the LIRCMOP test suite using nine competing CMOEAs
are presented in Section IV. Finally, the conclusion section
concludes this article.

II. RELATED WORKS AND MOTIVATION

The design of the CMOEA must maintain a proper
balance among three criteria: 1) constrained satisfaction;
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2) convergence; and 3) distribution for a given CMOP. Over
the past several years, many CMOEAs have been designed for
solving CMOPs with different constrained handling strategies,
which can be classified into four categories, as follows.

A. Penalty Functions Approaches

The penalty function approach attempts to add a CV value to
the fitness function of infeasible individuals to render them less
desirable, which in turn can convert a CMOP into an uncon-
strained MOP. The penalty factor λ is often used to maintain
a balance between the objectives and constraints, as shown
in (2)

fitness(x) = f (x) + λ × CV(x)

CV(x) =
J∑

j=1

gj(x) +
K∑

k=1

|hk(x)|. (1)

To appropriately set the penalty factor, many penalty func-
tion methods have been proposed, such as static, dynamic,
and adaptive penalties. Representative designs include the
ShiP [5] and dCMOEA [6].

However, the setting of the penalty factor often depends
on a specific problem, and it still needs to be tuned to find an
optimal penalty degree for infeasible solutions. Although some
self-adaptive penalty CMOEAs have been designed, feedback
information for setting the self-adaptive penalty factor is often
biased.

B. Separation of Objectives and Constraints Approaches

Some CMOEAs prefer to handle objectives and constraints
separately for solving CMOPs, including the CDP, epsilon
constraint handling, and stochastic ranking (SR).

C. Constraint Dominance Principle

Similar to the traditional dominant principle, CDP has two
additional comparison principles for an infeasible solution.
The feasible individual is the preferred candidate solution
compared to the infeasible individuals, and the infeasible
individual with a smaller CV value is superior to that with
a greater CV value. Popular designs in this category are
A-NSGA-III [7] and MOEA/D-ACDP [8].

Because the feasible solution often has a higher precedence
than the infeasible solution, CMOEAs in this category are
easily trapped in the local optimal feasible region.

D. Stochastic Ranking

SR methods compare the objectives or constraints randomly,
and the comparison order is determined by a given probability
parameter, Pf. When Pf is greater than a random number,
the objectives are prioritized over the constraints. By contrast,
when Pf is smaller than a random number, the constraints
precede the objectives. The best-known examples are SRA [9]
and CMOEA/D-DE-SR [10].

However, it is very difficult to obtain the optimal value
of the probability parameter Pf for CMOPs with different
problem characteristics. Additionally, because the objectives

or constraints are compared randomly, a few well-converged
infeasible solutions are often maintained.

E. Epsilon Constrained Handling

The epsilon constraint-handling adopts a CV tolerance
mechanism to consider the infeasible solutions as feasible
solutions within epsilon level ε. During the searching process,
the parameter ε plays a critical role in controlling the relax-
ation degree of the constraints. The most representative designs
include MOEA/D-IEpsilon [11] and MOEA/D-DAE [12].

Similarly, epsilon-constrained approaches must turn the
parameters carefully to control the decreasing epsilon level.
In addition, epsilon-constrained approaches show difficulties
and limitations in finding Pareto optimal solutions that are
located on the boundaries of the feasible regions.

F. Special Representation and Operator Approaches

This class of CHTs designs some special reproductions or
operators to generate more promising solutions and repair
infeasible solutions into feasible ones. In addition, some
approaches prune the search space by removing infeasible
regions. Typical CMOEAs include POCEA [18], C-PSA [19],
and feasible-guiding NSGA-II [20].

However, most CMOEAs in this category require high
computational costs to generate promising solutions and are
extremely sensitive to parameter tuning.

G. Hybrid Approaches

In recent years, several CMOEAs have been proposed
to integrate different CHTs to achieve better performance.
PPS [21], ToP [22], and DD-CMOEA [37] separate the
entire evolutionary process into multiple stages, and differ-
ent constraint-handling strategies are adopted in each stage.
Moreover, C-TAEA [23] and CCMO [24] divide the entire
population into multiple subpopulations or archives, and
different constraint-handling strategies are adopted in each
subpopulation or archive.

The novelty and shortcomings of existing CHTs and rep-
resentative CMOEAs are summarized in Table III of the
supplementary document.

H. Motivation

Although many CMOEAs have been proposed for solving
CMOPs, it remains difficult to balance constrained satisfaction
and convergence. Fig. 3 shows the experimental results of eight
state-of-the-art CMOEAs on the LIRCMOP8 test problem.
The population size was 100, and the maximal evaluation
was 100 000. The experiment was performed using PlatEMO
v3.4 [27].

As shown in Fig. 3, LIRCMOP8 has a very large infea-
sible region (displayed on a white background), which parti-
tions the feasible region (displayed on a shaded background)
into several isolated parts. In addition, the constrained PF
is different from the unconstrained PF, which is challeng-
ing for CHTs. Some CMOEAs, including A-NSGA-III [7],
CMOEAD [7], ToP [22], C-TAEA [23], and SRA [9], obtain
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Experimental results on LIRCMOP8 by eight state-of-the-art
CMOEAs with 100 individuals under 100 000 evaluations. (a) A-NSGA-
III. (b) CMOEAD. (c) ToP. (d) C-TAEA. (e) POCEA. (f) MOEA/D-DAE.
(g) SRA. (h) PPS.

only feasible local optimal solutions. Clearly, these CMOEAs
cannot manage a precise balance between constrained satis-
faction and convergence for LIRCMOP8. Some CMOEAs,
such as POCEA [18], PPS [21], and MOEA/D-DAE [12] can
find global feasible regions; however, they cannot identify
the entire constrained PF. These CMOEAs can converge to
the global feasible region; however, the diversity allows for
improvement.

However, most of the existing CHTs are derived by solving
a constrained single-objective optimization, the information

(a) (b)

Fig. 4. (a) Individuals that are dominated by FNDS need to consider only
convergence without reference to CV. (b) Individuals that are not dominated
by FNDS need to consider only CV without reference to convergence quality.

hidden from the FNDS has not been fully exploited. In
addition, many individuals need not to maintain a balance
between constrained satisfaction and convergence during the
evolutionary process.

Therefore, all individuals that are dominated by FNDS need
only consider convergence without reference to CV before they
converge to the FNDS. As shown in Fig. 4(a), u is an indi-
vidual dominated by the FNDS, u′ is the newly generated
candidate solution. In this case, u′ can replace u for better
convergence without minimizing poor constrained satisfaction.
It is unnecessary to waste the computation resources to bal-
ance the constrained satisfaction for u and v. For example, we
assume that v′ is accepted and replaced v because of better
constraint satisfaction, as shown in Fig. 4(a). The evolutionary
direction may be in the opposite direction to the convergence
toward FNDS.

By contrast, all individuals that are not dominated by FNDS
must be infeasible individuals, which need to consider only CV
without reference to convergence. As shown in Fig. 4(b), w′
can replace w for better CV without considering poor con-
vergence quality. It is unnecessary to use the computation
resources to balance convergence for w and z. For example,
we assume that z′ is accepted and replaced z owing to better
convergence, as shown in Fig. 4(b). The evolutionary direc-
tion may be opposite to the convergence toward the feasible
region.

III. PROPOSED ALGORITHM

In this study, a novel parameter-less CHT is proposed for
solving CMOPs. In addition, our algorithm adopts a two-stage
strategy to search for a globally constrained PF, as shown in
Fig. 5.

In the first stage, the proposed algorithm focuses on search-
ing for an unconstrained PF without considering constrained
satisfaction, as shown in Fig. 5(a). In the second stage, an
FNDS-based CHT is proposed to guide the entire popula-
tion to converge toward the PF, as shown in Fig. 5(b). The
two-stage strategy is beneficial for guiding the population to
converge toward the global feasible optimal region and avoid
being trapped in local optima.
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(a) (b)

Fig. 5. (a) First stage without considering constraint satisfaction. (b) Second
stage with proposed constraint handling technique.

(a) (b)

Fig. 6. (a) Randomly sampled individuals in the objective space. (b) Entire
population divided into three mutually exclusive subsets dynamically: FNDS,
FNDS≺, and FNDS⊀.

A. Feasible Nondominated Set-Based Constraint Handle

The MOP is very different from the single-objective
optimization problem, which has a set of tradeoff nondomi-
nated solutions. For a CMOP, an FNDS can provide important
information for constraint handling. In this study, a novel
parameter-less CHT is proposed for constrained multiobjective
optimization.

Fig. 6 shows a schematic illustrating how the individu-
als are divided into three subsets dynamically. As shown in
Fig. 6(a), individuals are sampled randomly in the objective
space, and should be located in feasible or infeasible regions.
In the proposed algorithm, the individuals are divided into
three mutually exclusive subsets: 1) FNDS; 2) FNDS≺; and
3) FNDS⊀ dynamically, which are denoted by red, blue, and
green, respectively. In Fig. 6(b), the most important individ-
ual is FNDS, which is shown in red. The blue individuals are
dominated by FNDS, denoted by FNDS≺. By contrast, the
green individuals are not dominated by FNDS, as denoted by
FNDS⊀.

Notably, the nondominated solutions in the feasible regions
are the best candidate solutions, which are shown in red in
Fig. 6(b). Second, the blue individuals in FNDS≺ may be
located in either the feasible or infeasible regions, both of
which have inherently poorer convergence than FNDS. The
most important task for blue individuals is to converge to the
FNDS. During the evolutionary process, constrained satisfac-
tion is not a necessary condition for the blue individuals in

(a) (b)

Fig. 7. (a) if FNDSDomCT
(
u′) = FNDSDomCT(u) and CV(u′) < CV(u),

u′ will replace u. (b) Although CV(u′) < CV(u), if FNDSDomCT
(
u′) > 0,

u′ will be neglected, regardless of u′ is feasible or infeasible solution.

FNDS≺. Third, the green individuals in FNDS⊀ must be infea-
sible solutions. Therefore, the green individuals in FNDS⊀

need to pursue only better constrained satisfaction without
considering convergent performance.

In our algorithm, we tailor three different strategies for the
three types of individuals in the second stage. Fig. 7 shows
the environmental selection strategy for green individuals in
FNDS⊀. Let u and v be two individuals in FNDS⊀, and u′
and v′ are the corresponding mutated candidate solutions. In
Fig. 7(a), our algorithm replaces u and v with the new can-
didates u′ and v′, respectively, because u′ and v′ have better
constraint values than u and v, respectively. Furthermore, it
is necessary that the mutated u′ and v′ are not dominated by
FNDS. By contrast, in Fig. 7(b), although u′ and v′ have better
constraint values than u and v, respectively, they are dominated
by FNDS. Because mutated u′ and v′ have poor convergence
quality compared with the original u and v, respectively, our
algorithm should reject the newly mutated candidate solutions.

Let P(i)
t be the ith individual in population Pt and NP(i)

t be
the newly mutated candidate solution. If P(i)

t is an individual
in FNDS⊀, the environmental selection strategy is as follows:

P(i)
t =

⎧
⎪⎪⎨

⎪⎪⎩

NP(i)
t , if FNDSDomCT

(
NP(i)

t

)
= FNDSDomCT

(
P(i)

t

)

and CV
(

NP(i)
t

)
< CV

(
P(i)

t

)

P(i)
t , else

(2)

where FNDSDomCT(P(i)
t ) is a function that counts the num-

ber of individuals of P(k)
t in FNDS that can dominate P(i)

t .
A smaller value of FNDSDomCT() implies better conver-
gence, and fewer individuals in FNDS can dominate P(i)

t

FNDSDomCT
(

P(i)
t

)
=

∑
BeDom

(
P(i)

t , P(k)
t

)

BeDom
(

P(i)
t , P(k)

t

)
=

{
1, P(k)

t ≺P
(i)
t

0, P(k)
t ⊀P

(i)
t

, and P(k)
t ∈ FNDS.

(3)

Fig. 8 shows the environmental selection strategy for blue
individuals in FNDS≺. Let u and v be two individuals in
FNDS≺, and u′ and v′ are the corresponding mutated candi-
date solutions. In Fig. 8(a), if u′ can dominate u, our algorithm
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(a) (b)

Fig. 8. (a) If FNDSDomCT(v′) < FNDSDomCT(v), v′ will replace v;
if FNDSDomCT(u′) = FNDSDomCT(u), u′ ≺ u, u′ will replace u. (b) If
FNDSDomCT(u′) = FNDSDomCT(u), u ≺ u′, u′ will be neglected; if
FNDSDomCT(v′) > FNDSDomCT(v), v′ will be neglected.

(a) (b)

Fig. 9. (a) If FNDSDomCT(u′) < FNDSDomCT(u), u′ will replace
u; if FNDSDomCT(v′) = FNDSDomCT(v), CV(v′) = CV(v) = 0,
v′ ≺ v, v′ will replace v; if FNDSDomCT(w′) = FNDSDomCT(w),
CV(w′) = CV(w) = 0, MED(w′) > MED(w), w′ will replace w.
(b) If FNDSDomCT(u′) > FNDSDomCT(u), u′ will be neglected. if
FNDSDomCT(z′) = FNDSDomCT(z), CV(z′) > CV(z), z′ will be neglected;
if FNDSDomCT(v′) = FNDSDomCT(v), CV(v′) = CV(v) = 0, v ≺ v′,
v′ will be neglected; if FNDSDomCT(w′) = FNDSDomCT(w), CV(w′) =
CV(w) = 0, MED(w′) < MED(w), w′ will be neglected.

accepts the mutated candidate solution u′ for a better con-
vergence quality. As shown in Fig. 8(a), v is dominated by
FNDS solutions D and E, whereas v′ is not dominated by
FNDS. Although v and v′ are nondominated with respect to
each other, the value of FNDSDomCT(v′) is lower than that
FNDSDomCT(v). Our algorithm replaces v with v′ for better
convergent quality.

By contrast, in Fig. 8(b), the mutated candidate solu-
tion u’ is dominated by the original u, and the value
of FNDSDomCT(v′) is greater than FNDSDomCT(v). The
proposed algorithm does not accept newly mutated u′ and v′.
If P(i)

t is an individual in FNDS≺, the environmental selection
strategy is as follows:

P(i)
t =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

NP(i)
t , if FNDSDomCT

(
NP(i)

t

)
< FNDSDomCT

(
P(i)

t

)

NP(i)
t , if FNDSDomCT

(
NP(i)

t

)
= FNDSDomCT

(
P(i)

t

)

and NP(i)
t ≺ P(i)

t

P(i)
t , else.

(4)

Fig. 9 presents the environmental selection strategy for indi-
viduals in the FNDS. As shown in Fig. 9(a), u, v, and w are the
three individuals in FNDS, and the u′, v′, and w′ are the cor-
responding mutated candidate solutions that are still feasible.
If the value of FNDSDomCT(u′) is smaller than the value of
FNDSDomCT(u), the original u is replaced by the mutated u′
for better convergence. When the value of FNDSDomCT(v′)
is equal to the value of FNDSDomCT(v), and v′ dominates
v, the mutated solution v′ can replace v for better conver-
gence. When the value of FNDSDomCT(w′) is equal to the
value of FNDSDomCT(w), w′, and w are nondominated with
respect to each other, and the value of MED(w′) is greater
than MED(w), the mutated solution w′ can replace w for better
diversity [43], [44].

The maximum extension distance (MED) is designed to
guide individuals to maintain a uniform distance and extend
to approximate the entire PF automatically. MED is defined
in (6)

MED
(

P(i)
t

)
= NearDist

(
P(i)

t

)
× TotalDist

(
P(i)

t

)
(5)

where

NearDist
(

P(i)
t

)
= min

j,j �=i

⎛

⎝

√√√√
M∑

m=1

(
f (j)
m −f (i)

m

)2

⎞

⎠ (6)

TotalDist
(

P(i)
t

)
=

P∑

j=1

⎛

⎝

√√√√
M∑

m=1

(
f (j)
m −f (i)

m

)2

⎞

⎠. (7)

In this equation, P(i)
t is the ith individual in population Pt

at the t-th generation. TotalDist(P(i)
t ) calculates the summation

of Euclidean distances between P(i)
t and P(j)

t , j = 1, . . . , P.
A greater value of TotalDist(P(i)

t ) implies that solution P(i)
t has

shifted away from other individuals. NearDist(P(i)
t ) calculates

the minimum Euclidean distance between P(i)
t and P(j)

t , j =
1, . . . , P and j �= i. A greater value of NearDist(P(i)

t ) implies
better individual distance.

By contrast, as shown in Fig. 9(b), u, v, w, and z
be four individuals in FNDS, and the u′, v′, w′, and z′
are the corresponding mutated candidate solutions, respec-
tively, which are still feasible solutions, except for z′. If
the value of FNDSDomCT(u′) is greater than the value of
FNDSDomCT(u), the original u is neglected because of its
poor convergence. When the value of FNDSDomCT(v′) is
equal to the value of FNDSDomCT(v), whereas v dominates
v′, the mutated solution v′ is neglected for worse conver-
gence. When w′ and w are nondominated with respect to each
other and the value of MED(w′) is smaller than MED(w), the
mutated solution w′ should be neglected because of its poor
diversity. Because the value of CV(z′) is greater than CV(z),
the mutated solution z′ should be ignored. If P(i)

t is an indi-
vidual in FNDS, the environmental selection strategy is as
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follows:

P(i)
t =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NP(i)
t , if FNDSDomCT

(
NP(i)

t

)
< FNDSDomCT

(
P(i)

t

)

NP(i)
t , if FNDSDomCT

(
NP(i)

t

)
= FNDSDomCT

(
P(i)

t

)

and CV
(

NP(i)
t

)
= CV

(
P(i)

t

)

and NP(i)
t ≺ P(i)

t

NP(i)
t , if FNDSDomCT

(
NP(i)

t

)
= FNDSDomCT

(
P(i)

t

)

and CV
(

NP(i)
t

)
= CV

(
P(i)

t

)

and NP(i)
t �≺P(i)

t P(i)
t �≺NP(i)

t

and MED
(

NP(i)
t

)
> MED

(
P(i)

t

)

P(i)
t , else.

(8)

Please note that individuals in the proposed CHT need
not to compromise the tradeoff between the three goals:
1) constrained satisfaction; 2) convergence; and 3) diversity.

1) The red individuals in FNDS are feasible nondominated
solutions, which should prefer better convergence and
diversity simultaneously.

2) Blue individuals are dominated by FNDS, which should
pursue better convergence. Therefore, the individuals in
FNDS≺ will not be trapped in the local feasible region
and will quickly converge to the FNDS.

3) Green individuals are neither FNDS nor dominated by
FNDS, thus, they should focus on better constraint satis-
faction. The individuals in FNDS⊀ will not be trapped
in unconstrained PF and will shift rapidly toward the
feasible region.

B. First Stage of CMOES

In the first stage, the proposed CMOES should focus on
searching for an unconstrained PF without considering the
constrained satisfaction. The computational complexity for
each generation is O(MP2), where M is the number of objec-
tive functions and P is the population size. The pseudocode is
shown in Algorithm 1.

The proposed algorithm adopts two mutation operators
to generate new mutated solutions: 1) the Gaussian muta-
tion operator [41] and 2) differential evolution (DE) mutation
operator [42]. The Gaussian mutation operator can increase
the exploitation ability, which creates a new mutated solu-
tion x′

i by adding the original xi to a random number in the
Gaussian distribution, as shown in (8)

x′
i = xi + N(0, σ ). (9)

The DE operator can increase the exploration ability, in
which three different solutions P(r1)

t , P(r2)
t , and P(r3)

t are cho-
sen randomly (i.e., they are three different individuals), and
the new offspring x′ is generated by the three individuals with
a random scaling factor, as shown in (9). The variable random
represents a random real number between zero and one

x′
i = x(r1)

i + random ×
(

x(r2)
i − x(r3)

i

)
. (10)

Algorithm 1: First Stage of CMOES

1 Initialization Pt, t =0
2 while ( t< 1/2 maximum generation) {
3 for I = 1 to P {
4 NP(i)

t = GaussMutation(P(i)
t ) // generate new

offspring
5 if (random < Pmutation) NP(i)

t = DEMutation(P(i)
t )

6 Objective Functions Evaluation (NP(i)
t )

7 if (NP(i)
t ≺P

(i)
t ) {

8 P(i)
t = NP(i)

t // better convergence
9 else if (NP(i)

t ⊀P(i)
t ) and (P(i)

t ⊀NP(i)
t )

10 if BeDomCT
(

NP(i)
t

)
< BeDomCT

(
P(i)

t

)

11 P(i)
t = NP(i)

t // better convergence

12 else if BeDomCT
(

NP(i)
t

)
= BeDomCT

(
P(i)

t

)

13 if MED
(

NP(i)
t

)
> MED

(
P(i)

t

)

14 P(i)
t = NP(i)

t // better diversity
15 end if
16 end if
17 end if
18 end for
19 end while

Let Pt be the population in the t-th generation and P(i)
t

be the ith individual in Pt. The mutated candidate individual
NP(i)

t is generated by the Gaussian mutation and DE muta-
tion, as shown in lines 4 and 5 of Algorithm 1. The original
P(i)

t is dominated by NP(i)
t , and should be replaced by NP(i)

t
for convergence improvement, as shown in lines 7 and 8 of
Algorithm 1. If P(i)

t and NP(i)
t are nondominated with respect

to each other, their BeDomCT() values should be further
compared. The function BeDomCT(P(i)

t ) counts the number
of other solutions that dominate P(i)

t without considering the
constraint satisfaction.

The proposed CMOES prefers to maintain the individual
NP(i)

t with a smaller value of BeDomCT(), which implies
that fewer solutions can dominate NP(i)

t , as shown in lines
10 and 11 of Algorithm 1. If their values are equal, their dis-
tribution quality should be further compared. An individual
with a greater MED value should be maintained for better
individual distribution quality, as shown in lines 12 to 14 of
Algorithm 1.

C. Second Stage of CMOES

In the second stage, the FNDS CHT was adopted to search
for the global constrained PF. The computational complex-
ity for each generation is O(MP2), where M is the number
of objective functions and P is the population size. The
pseudocode is shown in Algorithm 2.

After the feasible nondominated set FNDS is identi-
fied in each generation, individuals are divided into three
subsets, as shown in lines 2 to 5 of Algorithm 2.
The newly mutated solution is then generated with the
Gaussian mutation and DE mutation operators, as shown in
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Algorithm 2: Second Stage of CMOES

1 while ( t < maximum generation )
2 FNDS = FeasibleNonDominateSet()
3 for i = 1 to P

4 if FNDS≺P(i)
t then FNDS≺ = P(i)

t ∪FNDS≺

5 if FNDS⊀P(i)
t then FNDS⊀ = P(i)

t ∪ FNDS
⊀

// divide the individual by FNDS dynamically
6 NP(i)

t = GaussMutation(P(i)
t ) // generate new

offspring
7 Objective Functions and CV Evaluation (NP(i)

t )

8 OldDomCT = FNDSDomCT(P(i)
t )

9 NewDomCT = FNDSDomCT(NP(i)
t )

10 if P(i)
t ∈ FNDS⊀

11 if (NewDomCT = OldDomCT) and

12 (CV
(

NP(i)
t

)
< CV(P

(i)

t
)) then

13 P(i)
t = NP(i)

t // better constraint violation
14 end if
15 else if P(i)

t ∈ FNDS≺
16 if (NewDomCT < OldDomCT)

17 P(i)
t = NP(i)

t // better convergence
18 else (NewDomCT = OldDomCT) and

19 (NP(i)
t ≺P

(i)
t ) then

20 P(i)
t = NP(i)

t // better convergence
21 end if
22 else if P(i)

t ∈ FNDS

23 if CV
(

NP(i)
t

)
�=CV(P

(i)

t
) then continue

24 if (NewDomCT < OldDomCT)

25 P(i)
t = NP(i)

t // better convergence
26 else (NewDomCT = OldDomCT) and

27 if (NP(i)
t ≺P

(i)
t )

28 P(i)
t = NP(i)

t // better convergence
29 else (NP(i)

t ⊀P(i)
t ) and (P(i)

t ⊀NP(i)
t ) and

30 (MED
(

NP(i)
t

)
> MED

(
P(i)

t

)
) then

31 P(i)
t = NP(i)

t // better diversity
32 end if
33 end if
34 end if
35 end for
36 end while

line 6 of Algorithm 2. After the objective functions and
CV are evaluated, the values of FNDSDomCT(P(i)

t ) and
FNDSDomCT(NP(i)

t ) are calculated and assigned to the vari-
ables OldDomCT and NewDomCT, respectively, as shown in
lines 8 and 9.

If P(i)
t ∈ FNDS⊀, no individual in FNDS can dominate P(i)

t ,
and the value of OldDomCT is zero. The value of NewDomCT
is equal to that of OldDomCT , which in turn can prevent the
convergence from worsening. If CV(NP(i)

t ) is smaller than

CV(P(i)
t ), the mutated NP(i)

t replaces the original P(i)
t for

a better CV, as shown in lines 10 to 14.
If P(i)

t ∈ FNDS≺, more than one individual in FNDS can
dominate P(i)

t , and the value of OldDomCT is greater than
zero. When the value of FNDSDomCT(P(i)

t ) decreases to zero,
individual P(i)

t may become a feasible nondominated solution.
Therefore, if the value of NewDomCT is less than the value
of OldDomCT , the mutated NP(i)

t will replace the original P(i)
t

for better convergence, as shown in lines 15 to 17. If the value
of NewDomCT is equal to the value of OldDomCT , and NP(i)

t
can dominate P(i)

t , P(i)
t should be replaced by NP(i)

t for better
convergence, as shown in lines 18 to 21.

If P(i)
t ∈ FNDS, P(i)

t is a feasible solution, the value of
CV(P(i)

t ) is zero. If the mutated NP(i)
t becomes an infeasible

solution, the proposed CMOES should neglect it, as shown
in lines 22 and 23. Alternatively, convergence and diversity
qualities are considered in the subset FNDS. If the value of
NewDomCT is less than the value of OldDomCT , the mutated
NP(i)

t will replace the original P(i)
t for better convergence, as

shown in lines 24 and 25. When the value of NewDomCT
is equal to that of OldDomCT , if NP(i)

t can dominate P(i)
t ,

P(i)
t should be replaced by NP(i)

t to achieve better conver-
gence. If NP(i)

t and P(i)
t are nondominated with respect to each

other and MED(NP(i)
t ) is greater than MED(P(i)

t ), P(i)
t should

be replaced by NP(i)
t for a better distribution, as shown in

lines 26 to 34.
We note that the computational complexity of the func-

tion FeasibleNonDominateSet() is O(MP2), where M is the
number of objective functions, and P is the population
size. The second stage of CMOES includes two functions,
FeasibleDomCT and MED, and its time complexity is O(MP).
Therefore, the time complexity of the proposed CHT was
O(MP2). Because both stages have the same time complex-
ity O(MP2), the time complexity for the overall algorithm is
also O(MP2).

IV. EXPERIMENT

A. Competing CMOEAs and Experiment Settings

The performance of the proposed CMOES was compared
with that of nine state-of-the-art CMOEAs to validate its
effectiveness and efficiency. The nine competing CMOEAs
were ShiP [5], A-NSGA-III [7], MOEA/D-IEpsilon [11],
MOEA/D-SR [10], POCEA [18], PPS [21], C-TAEA [23],
CCMO [24], and DD-CMOEA [37]. These competing
approaches are commonly regarded as well-established repre-
sentatives employing different CHTs, including penalty, CDP,
epsilon, SR, special representation and operator, multiple
stages, and multiple populations.

These competing CMOEAs were evaluated on the CF [48],
MW [49], and LIRCMOP [10] test suites, which consist of
38 test instances with large infeasible regions. In addition,
the CMOP test instances have 2- or 3-D PFs, which are
characterized as convex, concave, mixed, and disconnected.
The inverted generational distance (IGD) [45] was adopted
to evaluate the performance of the competing algorithms, as
shown in (9). For each test function, 10 000 true Pareto optimal
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solutions were sampled evenly

IGD =
(∑|PF|

i=1 d2
i

)1/2

|PF| (11)

where di represents the Euclidean distance between the ith ref-
erence objective vector and nearest objective values obtained.

The experimental parameters are explained as follows.
1) The population size, P, was set to 100, and the maximum

number of iterations was set to 1000. Therefore, the
maximum number of function evaluations was 100 000.

2) For the Gaussian mutation, the distribution means μ was
set to zero, and the standard deviation σ was set to 0.2.
The SBX distribution index [46] and polynomial muta-
tion distribution index [47] were both set to 20. The
other parameters were chosen to be exactly the same as
those in the original articles.

3) To ensure a fair comparison, all competing CMOEAs
were run 30 times independently for every test instance.

The proposed CMOES algorithm was implemented
and a corresponding GUI program was developed to
facilitate the experiments. For convenience, interested
readers can verify the performance of CMOES and
obtain the source code from the GitHub website:
https://github.com/MaOEA/CMOES.

B. Comparison Result on Benchmark Test Suites

The IGD values obtained by ten competing CMOEAs are
shown in Table I. From 39 test instances of the CF, MW, and
LIRCMOP benchmark suites, the proposed CMOES excelled
in 19 test instances. For the remaining instances, DD-CMOEA
and CCMO excelled in six test instances each. MOEADSR
and PPS excelled in two and one test instance, respectively.
The empirical results show that CMOES outperforms the other
CMOEAs.

As shown in Table I, CMOES obtained significantly
better IGD performance than the other CMOEAs on the
six CF instances, two MW instances, and 11 LIRCMOP
instances. The proposed CHT was validated using four types
of CMOPs [49]. For Type-I CMOPs, the constrained PF is
the same as the unconstrained PF. The proposed CMOES
can maintain good diversity to avoid losing the unconstrained
PF, such as MW14 and LIRCMOP6. For Type-II CMOPs,
the constrained PF is part of the unconstrained PF. The
proposed CMOES adopts a two-stage strategy to switch
the objective priority to a constraint priority, such as CF10
and LIRCMOP9. For Type-III CMOPs, the constrained PF
consists of part of the unconstrained PF and part of the
boundary of the feasible region. The proposed CHT divides
the population into three subsets dynamically and guides
individuals to simultaneously pursue better objective values
and lower CVs, such as LIRCMOP11 and LIRCMOP12.
For Type-IV CMOPs, the unconstrained PF is located
entirely outside the feasible region. In the second stage, the
proposed CHT focuses on guiding the infeasible individuals in
FNDS⊀ shifting toward feasible regions, such as LIRCMOP4
and LIRCMOP7.

Fig. 10 shows the results obtained on the LIRCMOP test
suite using the proposed CMOES. As shown in Fig. 10(a)–(d),
although LIRCMOP1-4 have extremely large infeasible
regions in the entire search space, the proposed CMOES can
converge to very small feasible regions and maintain a good
distribution on convex, concave, and mixed disconnected PFs.
For LIRCMOP5-6, the constrained PFs are the same as the
unconstrained PFs; therefore, the PFs can be obtained by the
first stage in the CMOES. As shown in Fig. 10(e) and (f),
although there are few individuals in FNDS⊀ for the second
stage, the proposed CMOES still performs well. By contrast,
the constrained PFs of LIRCMOP7-8 are different from the
unconstrained PFs, and the proposed two-stage strategy and
FNDS CHT are very effective for finding the global optimal
solutions in a feasible region.

As shown in Fig. 10(i)–(l), LIRCMOP9-12 has not only
large infeasible regions, but also disconnected PFs. Moreover,
the PFs of LIRCMOP9-10 were part of the unconstrained
PFs, whereas the PFs of LIRCMOP11-12 were located
on the constraint boundaries. In Fig. 10(i)–(l), we can
observe that CMOES can find all disconnected constrained
PFs efficiently and effectively in narrow and small feasible
regions. Fig. 10(m) and (n) show the obtained results for
LIRCMOP13-14, which are three-objective CMOP instances.
The constrained PF of LIRCMOP13 is the same as that
of the unconstrained PF, whereas the constrained PF of
LIRCMOP14 is located at the boundaries of the feasible
region. The proposed CMOES obtained good performance on
these three-objective instances, and the solutions were well-
converged and well-distributed over the entire 3-D concave
PFs. For the LIRCMOP13-14, the individuals in FNDS should
form a 3-D domination space, the proposed FNDS constraint
handling technique can still guide the FNDS≺ and FNDS
to converge to the PF effectively. Moreover, the two-stage
strategy is helpful in directing the population through the
large-scale infeasible region and reaching the boundaries of
the unconstrained PF.

Fig. 11 shows the results obtained for LIRCMOP8 using
the competing ten CMOEAs. LIRCMOP8 not only has
a very large infeasible region but also an entirely uncon-
strained PF located outside the feasible region. Four CMOEAs,
ANSGAIII, POCEA, MOEADSR, and MOEAD-IEpsilon,
only obtained local feasible optimal solutions. Four other
CMOEAs, PPS, CTAEA, CCMO, and DDCOMEA, can obtain
part of the global optimal solutions, although the diversity is
extremely poor. With limited fitness evaluations, only a por-
tion of the solutions obtained by ShiP are located in the
global optimal region, whereas the others are still located
in the local optimal region. The proposed CMOES achieved
the best performance on LIRCMOP8; the solutions were well
converged and well distributed on the constrained PF.

C. Discussion on the Friedman Statistical Test

In the comparison experiment, 38 CMOPs in three test suites
were adopted to evaluate the performance of ten competing
CMOEAs. Fig. 12 shows the average ranking of the Friedman
statistical test for multiple comparisons. In Fig. 12, the

Authorized licensed use limited to: Zhiwei Xu. Downloaded on September 29,2024 at 06:37:17 UTC from IEEE Xplore.  Restrictions apply. 



26 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 1, FEBRUARY 2024

TABLE I
AVERAGE IGD VALUES OVER 30 RUNS ON BENCHMARK INSTANCES (POPULATION SIZE 100),

WHERE THE BEST MEAN IS SHOWN IN A GRAY BACKGROUND

proposed CMOES exhibits the lowest ranking and significantly
better performance than the other nine CMOEAs. CCMO and
DD-CMOEA also obtained a good average ranking, second
and third, respectively.

To further analyze the significant differences for pairwise
comparisons, the Holm test was adopted as a post-hoc test,
as shown in Table II. Notably, a Bonferroni correction for
multiple testing was applied (the p-values in the “Sig” column
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Fig. 10. Experimental results on LIRCMOP test suite by CMOES with population size 100. (a) LIRCMOP1. (b) LIRCMOP2. (c) LIRCMOP3. (d) LIRCMOP4.
(e) LIRCMOP5. (f) LIRCMOP6. (g) LIRCMOP7. (h) LIRCMOP8. (i) LIRCMOP9. (j) LIRCMOP10. (k) LIRCMOP11. (l) LIRCMOP12. (m) LIRCMOP13.
and (n) LIRCMOP14.

Fig. 11. Experimental results on LIRCMOP8 by ten competing CMOEAs with population size 100. (a) CMOES. (b) ShiP. (c) A-NSGA-III. (d) MOEA/D-
IEpsilon. (e) MOEA/D-SR. (f) POCEA. (g) PPS. (h) C-TAEA. (i) CCMO. and (j) DD-CMOEA.

are multiplied by the number of tests being performed to
provide the “Adj. Sig” p-values). As the adjusted p-values
were smaller than 0.05, there remained a significant difference

between CMOES and six competing CMOEAs, including
ShiP, ANSGA-III, MOEAD-IEpsilon, MEAD-SR, POCEA,
and PPS.
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TABLE II
RESULTS OF EFFECT SIZE FOR THE FRIEDMAN TEST AND HOLM TEST WITH BONFERRONI CORRECTION

Fig. 12. Average ranking of the Friedman test by ten competing CMOEAs
on 38 CMOPs.

D. Discussion on the Effectiveness of FNDS CHT

The proposed CMOES divides the population into three
mutually exclusive subsets: 1) FNDS; 2) FNDS≺; and
3) FNDS⊀ dynamically, and different strategies were applied
to these subsets. However, during the first stage, the pop-
ulation may cross the CPF and reach the UPF, or still
not have crossed the infeasible region and be located out-
side the feasible region. In these cases, the proposed FNDS
CHT can still function properly, although no feasible non-
dominated solution exists at the beginning of the second
stage.

In the first scenario, the entire population may converge
to an infeasible region near the unconstrained PF in the first
stage, as shown in Fig. 13(a). When there is no feasible solu-
tion, the subset FNDS must be an empty set, i.e., FNDS = ∅.
Therefore, no individual is dominated by FNDS, the subset
FNDS≺ is also an empty set, i.e., FNDS≺ = ∅. In this situa-
tion, all the individuals are infeasible solutions and belongs to
FNDS⊀. Although all individuals are in FNDS⊀, these infea-
sible individuals should shift toward the feasible region with
better constraint satisfaction during the second stage, as shown
in Fig. 13(b).

Some of the mutated individuals may shift to the global
feasible region, whereas a few individuals may also shift
toward local feasible or infeasible regions with smaller CV val-
ues. Therefore, an increasing number of infeasible individuals
become FNDS, as shown in Fig. 13(c) and (d).

(a) (b)

(c) (d)

Fig. 13. (a) In the first scenario, all individuals have crossed the CPF
and reached the UPF, FNDS does not exist and all the individuals belong
to FNDS⊀. (b) During the second stage, all these individuals shift toward
the feasible region with better constraint satisfaction. (c) Some individuals
could reach the global feasible region, becoming the individuals in FNDS.
(d) With the FNDS constraint handling technique, more individuals should
become FNDS.

Although the proposed two-stage algorithm attempts to
reach the unconstrained PF in the first stage, the feasible
nondominated solutions may only be located in the local fea-
sible region and not the global feasible region. If feasible
individuals exist near the global feasible region, the proposed
FNDS CHT performs satisfactorily.

Under the second scenario, the entire population may be
located outside the global feasible region that does not cross
the infeasible region, as shown in Fig. 14(a) and (b). During
the second stage, the infeasible individuals in FNDS⊀ should
shift toward the feasible region with better constraint satisfac-
tion, as shown in Fig. 14(c). Mutated individuals may shift
to global or local feasible regions randomly, with smaller
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(a) (b)

(c) (d)

Fig. 14. (a) Under the second scenario, the entire population may locate
outside the global feasible region which have not crossed the infeasible region.
(b) FNDS is only located in the local feasible region. (c) In the second stage,
these individuals in FNDS⊀ should shift toward the feasible region with better
constraint satisfaction. (d) When some individuals reach the global feasible
region, the FNDS should change from the local feasible region to the global
feasible region.

CV values. When some individuals reach the global feasi-
ble region, the FNDS changes from a local feasible region
to a global feasible region, as shown in Fig. 14(d).

V. CONCLUSION

In this study, a two-stage CMOEA was proposed
for solving CMOPs based on an evolutionary strategy.
First, a parameter-less CHT is designed for constrained
multiobjective optimization, which is based on an FNDS. The
FNDS CHT divides the entire population into three mutu-
ally exclusive subsets: 1) FNDS; 2) FNDS≺; and 3) FNDS⊀,

dynamically, then different environmental selection strategies
are applied to these subsets. The individuals in subset FNDS≺
are dominated by FNDS and are instructed to pursue only
better convergence toward FNDS. The individuals in subset
FNDS⊀ are neither FNDS nor FNDS≺, which are always
located in converged infeasible regions. These infeasible indi-
viduals in FNDS⊀ need to focus only on better constraint
satisfaction. The individuals in the subset FNDS are ded-
icated to searching for well-distributed and well-converged
feasible nondominated solutions. Second, the proposed algo-
rithm solves CMOPs in two stages. In the first stage, the
proposed algorithm focuses solely on converging to an uncon-
strained PF without considering constrained satisfaction. In the
second stage, the FNDS CHT is adopted to guide the popula-
tion converging toward the global constrained PF effectively.
The performance of the CMOES was compared with eight
state-of-the-art CMOEAs. The experimental results confirm

that the proposed CMOES outperforms the chosen compet-
ing CMOEAs on 14 LIRCMOP test instances with IGD
performance indicators.

Although CMOES can achieve competitive performance
on CF, MW, and LIRCMOP test suites, it is still challeng-
ing to satisfy and balance the three criteria simultaneously:
1) constrained satisfaction; 2) good convergence; and 3) good
distribution. Clearly, CMOES prioritizes constrained satisfac-
tion and convergence, although diversity performance still
has scope for improvement. In addition, we plan to exploit
the proposed CHT built into other dynamic, many-objective,
or large-scale EMO frameworks for solving more real-world
CMOPs. It is also planned to develop a knee-based CMOEA to
alleviate the burden of decision makers.
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