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Abstract—In recent years, numerous efficient and effective
multimodal multiobjective evolutionary algorithms (MMOEAs)
have been developed to search for multiple equivalent sets of
Pareto optimal solutions simultaneously. However, some of the
MMOEAs prefer convergent individuals over diversified indi-
viduals to construct the mating pool, and the individuals with
slightly better decision space distribution may be replaced by
significantly better objective space distribution. Therefore, the
diversity in the decision space may become deteriorated, in spite
of the decision and objective diversities have been taken into
account simultaneously in most MMOEAs. Because the Pareto
optimal subsets may have various shapes and locations in the
decision space, it is very difficult to drive the individuals con-
verged to every Pareto subregion with a uniform density. Some
of the Pareto subregions may be overly crowded, while oth-
ers are rather sparsely distributed. Consequently, many existing
MMOEAs obtain Pareto subregions with imbalanced density. In
this article, we present a two-stage double niched evolution strat-
egy, namely DN-MMOES, to search for the equivalent global
Pareto optimal solutions which can address the above challenges
effectively and efficiently. The proposed DN-MMOES solves the
multimodal multiobjective optimization problem (MMOP) in two
stages. The first stage adopts the niching strategy in the decision
space, while the second stage adapts double niching strategy in
both spaces. Moreover, an effective decision density self-adaptive
strategy is designed for improving the imbalanced decision
space density. The proposed algorithm is compared against eight
state-of-the-art MMOEAs. The inverted generational distance
union (IGDunion) performance indicator is proposed to fairly
compare two competing MMOEAs as a whole. The experimental
results show that DN-MMOES provides a better performance
to search for the complete Pareto Subsets and Pareto Front on
IDMP and CEC 2019 MMOPs test suite.

Index Terms—Evolution strategy, multimodal multiobjective
evolutionary algorithm (MMOEA), multimodal multiobjective
optimization problem (MMOP).
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Fig. 1. Nine different Pareto subsets (i.e., Subset1–Subset9) map to the same
Pareto front. The Pareto optimal solutions are the union of the subsets from
Subset1 to Subset9.

I. INTRODUCTION

IN RECENT years, many multiobjectiv evolutionary
algorithms (MOEAs) have been adapted to tackle

multimodal multiobjective optimization problems (MMOPs)
involving multiple groups of optimal solutions to be
found simultaneously [1]–[6]. Additional multimodal
MOEAs (MMOEAs) have been carefully crafted to solve
real-world applications [7]–[9], such as hybrid rocket engine
design [10], and spatiotemporal patterns mining [11], to name
a few.

The mathematical model of a multiobjective optimization
problem (MOP) can be formulated as follows:

min f (x) = min
[
f1(x), f2(x), . . . , fM(x)

]T (1)

where x = [x1, x2, . . . , xN]T ∈ �, x consists of N decision
variables. f (x) consists of M objective functions, fi(x) ∈ RM ,
i = 1, . . . , M. RM denotes the objective space.

The MOPs mandate a search for a set of tradeoff optimal
solutions called the Pareto set (PS). The corresponding objec-
tive vectors of PS is called the Pareto optimal front (PF). The
MMOP is a special class of MOPs which possesses more than
one equivalent set of Pareto optimal solutions or at least more
than one local Pareto optimal solution for any point on the PF.

Fig. 1 shows an example of MMOP given nine distinct
Pareto Subsets in the decision space (i.e., Subset1 to Subset9 of
PS). All the Pareto subsets are corresponding to the same
Pareto front in the objective space (i.e., PF).

Finding the Pareto optimal solutions for a given MMOP
is quite different from that of the traditional MOPs,
which dictates to satisfy three conditions simultaneously [12]:
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Fig. 2. Obtained three different results on SYM-PART1 instance with
27 individuals. (a) Best objective space distribution, but poor decision space
distribution. (b) Best decision space distribution, but poor objective space
distribution. (c) Balance decision and objective spaces distribution.

1) well-converged; 2) well-distributed in the objective space;
and 3) well-distributed in the decision space.

For example, let the population size be 27 for SYM-
PART1 test instance, which has nine equivalent groups of
Pareto optimal solutions [13]. If the deployed MOEA satisfies
conditions 1) and 2), the resulted PS and Pareto front (PF)
could appear like Fig. 2(a). Although the obtained 27 solu-
tions are well-distributed and well-converged in the objective
space, only single Pareto subset is identified in the decision
space. If the underlying MOEA focuses solely on conditions
1) and 3), the obtained PS/PF could appear as Fig. 2(b). The
obtained 27 solutions could have located in all nine Pareto
subsets, however, the corresponding Pareto front comprises of
only three distinct solutions in the objective space. Actually,
the ideal MMOEA should satisfy all three conditions simul-
taneously, and the resulted Pareto optimal solutions would be
well-distributed and well-converged in both the objective and
decision spaces, as can be seen from Fig. 2(c).

Existing MMOEAs could be broadly classified into three dif-
ferent categories, including Pareto-based approaches [13]–[20],
decomposition-based approaches [21], [22], and indicator-
based approaches [23]–[25]. The Pareto-based MMOEAs select
converged solutions with Pareto dominance principle, and then

enhance the decision space diversity for solving MMOPs. On
the other hand, the decomposition-based approaches adopt
the notion to decompose a given MMOPs into a set of
single-objective subproblems, which integrates decision space
diversity for finding multimodal optimal solutions. Finally, the
indicator-based approaches adopt performance indicators to
guide the search process in both the decision and objective
spaces.

Unfortunately, most of the existing MMOEAs often face
a number of challenges to handle three conditions simultane-
ously: 1) well-converged; 2) well-distributed in the objective
space; and 3) well-distributed in the decision space. Some
MMOEAs select high-quality individuals into the mating pool
of the offspring, and “convergent individuals” are treated
a higher priority than that of “diversity individuals.” However,
when too many well-converged, but poor diversity individu-
als are selected into the mating pool, the diversity will be
inadvertently deteriorated in the decision space. In addition,
many existing MMOEAs tend to obtain Pareto subregions
with imbalanced density, i.e., some of the Pareto subregions
are overly crowded, while others are rather sparsely occupied.
Moreover, although diversities in the decision and objective
spaces have been taken into account simultaneously in most
MMOEAs, some individuals with significantly better objective
space distribution may replace the individuals with slightly
better decision space distribution. Consequently, it is impos-
sible to improve the local decision space diversity anymore
without neighboring individuals. Since the MMOP involves
a many-to-one unidirectional mapping from the decision space
to the objective space, traditional diversity strategies may
lead to decision space diversity deterioration, including those
designs exploiting diversity in the objective space first and then
diversity in the decision space, or diversity in both spaces at
the same time from the beginning of the evolutionary process.

In this article, a novel double niched evolution strategy
is proposed for solving MMOPs, namely DN-MMOES. The
main contributions of this study are threefold.

First, the proposed algorithm solves the MMOP in two
stages. The first stage adopts the niching strategy in the
decision space, whose goal is to find well-distributed and well-
converged solutions in the decision space. On the other hand,
the second stage invokes double niching strategy in both the
objective and decision spaces, whose goal is to improve the
diversity in the objective space.

Second, the evolution strategy is adapted in the proposed
algorithm. Because new mutated candidate solution needs only
to compare with the original solution, no mating pool is
required for offspring generation, which can avoid the negative
influence by choosing more convergent individuals.

Third, an effective decision density self-adaptive strategy
is designed herein to improve the imbalanced density of the
different Pareto subregions in the decision space.

The remaining parts of this article are presented as follows.
A comprehensive review of related works is analyzed to inspire
the motivation of the proposed work in Section II. Section III
provides the details of the proposed DN-MMOES thoroughly.
The experimental results and relevant observations on IDMP
and CEC 2019 MMOP competition benchmark functions are
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given in Section IV. Finally, conclusions and future research
directions are outlined in Section V.

II. RELATED WORKS AND MOTIVATION

The design objective of MMOEAs is quite different from
that of the generic MOEAs, which demands the obtained
solutions satisfy three conditions simultaneously, including
well-converged, well-distributed in both the objective and
decision spaces. In recent years, numerous MMOEAs have
been proposed for solving MMOPs with different strate-
gies, which can be roughly classified into three different
categories, including Pareto-based approaches, decomposition-
based approaches, and indicator-based approaches.

A. Multimodal Multiobjective Optimization Approaches

1) Pareto-Based Approaches: Deb and Tiwari [14]
proposed the Omnioptimizer that utilized crowding distances
in both the decision and objective spaces to search for
multiple sets of Pareto optimal solutions. Liu et al. [15] sug-
gested a double-niched evolutionary algorithm (DNEA), which
adopted the sharing functions to maintain good individual
diversity. Liang et al. [16] replaced the crowding distance
in the objective space by the crowding distance in the deci-
sion space, and presented an innovative decision space-based
niching NSGAII (DN-NSGA-II) for solving MMOPs.

Kim et al. [17] incorporated two archives to improve the
performance of the strength Pareto evolutionary algorithm 2
(SPEA2+), which updated the archives with density qualities.
Liu et al. [18], on the other hand, designed an MMOEA with
two-archive and recombination strategies (called TriMOEA-
TA&R), which achieved multiple equivalent diversified and
converged Pareto optimal solutions at the same time.

Liu et al. [19] transformed the decision space density as
the selection criterion and presented a convergence-penalized
density method (CPDEA) for solving MMOPs. Furthermore,
Yue et al. [20] integrated special crowding distance into
multiobjective particle swarm optimization algorithm (MO-
Ring-PSO-SCD) to search for multiple equivalent Pareto
optimal solutions at once.

2) Decomposition-Based Approaches: The MMOEAs in
this category adopt a group of uniformly distributed ref-
erence points or vectors to decompose the MMOP into
a group of subproblems, such as MOEA based on decom-
position (MOEA/D) [21]. Hu and Ishibuchi [22] presented
a decomposition-based method, which integrated the diver-
sity maintenance mechanism in the decision space. In addi-
tion, Tanabe and Ishibuchi [23] proposed a decomposition-
based algorithm, which adopted dynamic population size and
integrated addition and deletion operators within MOEA/D
(MOEA/D-AD).

3) Indicator-Based Approaches: The indicator-based
MMOEAs prefer to guide the evolutionary progress along
reference vectors with chosen performance indicators.
Ulrich et al. [24] presented a hypervolume indicator-based
MMOEA, which adopted Solow–Polasky diversity technique
in both the decision and objective spaces. Alternatively,
Ishibuchi et al. [25] designed two-objective solution set

Fig. 3. Procedure of Omnioptimizer algorithm [14].

Fig. 4. (a) Thirty candidate individuals distributed near every Pareto
subregion. (b) Selected fifteen individuals with better convergent quality.

to optimize hypervolume indicator and decision diversity.
Tanabe and Ishibuchi [26] presented a niching indicator-based
algorithm for multimodal many-objective optimizer (called
NIMMO) for many-objective optimization problems.

B. Motivation

Even appreciable progress has been made in the state-of-
the-art designs, unfortunately, existing MMOEAs still face the
following challenges [12], [19].

1) Diversity Deterioration in the Decision Space: In order
to generate high-quality offspring, some MMOEAs choose
the better convergent solutions at first. Then, the diversity
quality in the decision and objective spaces would be taken
into account next. During the selection process, those well-
converged, but poorly diversified solutions are preferable to
those poorly converged, but well-diversified solutions. As can
be seen from Fig. 3, Omnioptimizer, as a representative, places
a high priority in selecting convergent solutions to the next
generation in the nondominated sorting step.

However, some of the convergent solutions may have poor
diversity quality. When too many overly crowded conver-
gent solutions are chosen, the decision space diversity would
become deteriorated. For example, Fig. 4(a) shows 30 indi-
viduals for SYM-PART1 instance, which are distributed near
every Pareto subregion. On the other hand, Fig. 4(b), produced
by Omnioptimizer [14], shows the chosen 15 individuals with
better convergent priority criterion. Obviously, many potential
Pareto subregions are missing out. As a result, the distribution
in the decision space become worsen.
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Fig. 5. (a) Population initialization on SYM-PART3 test instance.
(b) Converging to the Pareto subregions. (c) Obtained Pareto optimal solutions
with imbalanced densities.

In order to solve the degradation of diversity in the decision
space, many techniques have been proposed. The MO-Ring-
PSO-SCD algorithm uses ring structure, which applies a local
Pareto sorting for selection operation. CPDEA algorithm takes
into account both the deterioration of diversity of solution set
in the decision space and the imbalanced density, so it has
achieved a competitive performance.

2) Imbalanced Density in the Pareto Subregions: Because
the Pareto optimal subsets may have various shapes and loca-
tions in the decision space, it is very difficult to drive the
individuals converged to every Pareto subregion with a uni-
form density. Some of the Pareto subregions may be overly
crowded, while others are rather sparsely distributed. It is very
important to improve the imbalanced densities of Pareto sub-
regions in the decision space. As can be seen from Fig. 5,
the SYM-PART3 has nine rotated and transformed Pareto-
optimal subsets [13]. Although the initialized 36 individuals
are randomly distributed uniformly as displayed in Fig. 5(a),
some MMOEAs are very easy to obtain imbalanced Pareto
subregions, as exemplified from Fig. 5(b) and (c). As shown
in Fig. 5(c), some of the subregions have 5 or 6 individuals,
while other subregions have only 2 or 3 individuals. The exper-
imental results are produced by the first stage of the proposed
DN-MMOES.

3) Distribution Tradeoff Between Decision and Objective
Spaces: In spite of the decision and objective diversities have
been taken into account simultaneously in most MMOEAs,
the decision space diversity should not be treated equally as
objective space diversity. During the lengthy evolutionary pro-
cess, some individuals with significantly better objective space
distribution may replace the individuals with slightly better
decision space distribution. However, it is extremely difficult to
improve the diversity anymore for some local decision regions
where few or none neighboring individuals remain.

For example, Fig. 6 shows 42 individuals for SYM-
PART1 instance, which are distributed near every Pareto
subregion. Individual A is the only candidate solution in sub-
region1, which has good decision space quality, but poor
objective space quality. On the contrary, individual B located
near subregion2, which has poor decision space quality,
but good objective space quality. Because individual B is
a boundary solution, the normalized objective value will
be infinite. Most of the algorithms would choose individ-
ual B with a higher priority over individual A, however, the

Fig. 6. Example of objective space distribution versus decision space
distribution.

subregion1 would be inadvertently missing out without main-
taining individual A. The experimental results are produced by
the proposed DN-MMOES with grouping individuals.

III. PROPOSED ALGORITHM

In this article, we present a two-stage double niched evolu-
tion strategy for solving MMOPs, named DN-MMOES, which
can address these challenges listed in Section II-B efficiently
and effectively. For the diversity deterioration challenge, in
the proposed evolution strategy, every new mutated candidate
solution needs only to compare with the corresponding original
solution, which can avoid the negative influence from mat-
ing pool. For the distribution tradeoff challenge, the proposed
DN-MMOES solves the MMOP in two stages. The first stage
adopts the niching strategy in the decision space, while the
second stage incorporates the double niching strategy in both
the objective and decision spaces. The seamlessly integrated
two-stage strategy can improve the decision and objective dis-
tributions simultaneously. In addition, an effective decision
density self-adaptive strategy is designed to move the over-
crowded individuals to the sparse region, which is helpful
to tackle the challenge of imbalanced density in the Pareto
subregions.

A. Decision Density Self-Adaptive Strategy

Given an MMOP, the Pareto optimal subsets may have
uneven distribution, and as a result, a uniform initialization
of population may find imbalanced Pareto subsets. Some of
the Pareto subregions are overly crowded, while others could
be rather sparse. The decision density self-adaptive strategy
is designed to improve the decision densities in imbalanced
Pareto subregions.

Our algorithm adopts the density estimation method of
DBSCAN [27] and OPTICS [28], which count the number
of nearest neighbors in a given radius. Let P(i)

t be the ith
individual in Population Pt at the tth generation, and x(i)

n

is the nth decision variable of the individual P(i)
t . Let xn

max
and xn

min be the maximum and minimum decision variables
in the nth dimension. The radius value is the δ percent of
the Euclidean distance between the maximum and minimum
decision vectors, as shown in lines 1–7 of Algorithm 1.

Let variable dist be the distance between two individu-
als, and variable NeighborCount[i] be the number of nearest
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Algorithm 1 Decision Density Self-Adaptive Strategy
Input: Original Population
Output: New Population with Density Self-Adaptive
Strategy

1: Radius = 0;
2: for n = 1 to N
3: xn

max = maxi(x
(i)
n ) ; i ∈ [1, P]

4: xn
min = mini(x

(i)
n ) ; i ∈ [1, P]

5: Radius = Radius + (xn
max − xn

min)2;
6: end for
7: Radius = sqrt(Radius)/δ;
8: for i = 1 to P
9: NeighborCount[i] = 0;

10: for j = 1 to P do

11: dist = sqrt(
∑N

n=1 (x(i)
n − x(j)

n )
2
);

12: if dist < Radius then
13: NeighborCount[i] = NeighborCount[i] + 1;
14: end if
15: end for
16: end for
17: MaxDenIdx = maxi(NeighborCount[i]); i ∈ [1, P]
18: MinDenIdx = mini(NeighborCount[i]); i ∈ PS

19: NearDistMaxDenIdx = minj∈P(

√
∑N

n=1 (x(MaxDenIdx)
n − x(j)

n )
2
);

20: NearDistMinDenIdx = minj∈P(

√
∑N

n=1 (x(MinDenIdx)
n − x(j)

n )
2
);

21: if NeighborCount[MaxDenIdx]
NeighborCount[MinDenIdx] > 1 and NearDistMaxDenIdx

NearDistMinDenIdx
< 1

22: P(MaxDenIdx)
t = GaussMutation

(
P(MinDenIdx)

t

)

23: end if

neighbors of the ith individual. For each individual, if the
dist is smaller than the radius, then accumulate the variable
NeighborCount[i], as shown in lines 8–16 of Algorithm 1.

Let variable MaxDenIdx be the index of the maximum
density individual, which has the largest number of near-
est neighbors NeighborCount[i], and variable MinDenIdx be
the index of the minimum density individual, which has the
smallest number of nearest neighbors NeighborCount[i]. Then,
the maximum density index MaxDenIdx would be selected
from the whole population, and the minimum density index
MinDenIdx would be chosen from the nondominated solu-
tions. Furthermore, the maximum density index, MaxDenIdx,
and the minimum density index, MinDenIdx, would be chosen
for further self-adaptive adjusting. In the whole population, the
individual with minimum density may have poor convergent
quality. To avoid convergence deterioration, the MaxDenIdx
individuals would be selected from the whole population,
while the MinDenIdx individuals would be chosen from the
nondominated solutions. Finally, the maximum density indi-
vidual should be taken place with mutated minimum density
individuals, if and only if the NeighborCount is greater and the
NearDist is smaller than those of the minimum density indi-
vidual, as shown in lines 17–23 of Algorithm 1. Moreover, the
quality of the new mutated individual would be evaluated in
the next generation.

For example, in Fig. 7, individual p has the maximum
number of neighbors, while individual q has the minimum
number of neighbors within a given radius. The NearDist(p)
refers to the distance between p and its nearest neighbor. In

Fig. 7. (a) Individual p has the maximum number of neighbors, and smaller
distance from nearest neighbor than that of individual q. The distribution qual-
ity of individual p needs to be improved. (b) Individual p has the maximum
number of neighbors, but with a greater distance from nearest neighbor than
that of individual q. The individual p does not need to be changed.

Fig. 8. Example of the decision density self-adaptive strategy.

Fig. 7(a), the value of NearDist(p) is smaller than the value of
NearDist(q), which means the density of p is higher than that
of q. Clearly, the distribution quality of individual p needs to
be improved. However, in Fig. 7(b), the value of NearDist(p)
is greater than the value of NearDist(q), which implies the
distribution of p maybe sparser than that of q. However, the
density of p is not higher than that of q, and the individual p
does not need to be changed.

The computational complexity of the decision density self-
adaptive strategy is O(NP2), where P is the population size
and N is the number of decision variables. The pseudocode of
the proposed decision density self-adaptive strategy is given
in Algorithm 1.

Fig. 8 shows an example of the decision density self-
adaptive strategy. As can be seen from Fig. 8(a), our algorithm
first identifies the individuals PMaxDenIdx and PMinDenIdx, which
are located in the most overcrowded and sparsest regions,
respectively. Because the NeighborCount and NearDist values
of the maximum density individual are greater than those of
the minimum density individual, our algorithm would replace
the most overcrowded individual PMaxDenIdx with the spars-
est mutated individual PMinDenIdx. As shown in Fig. 8(b), the
decision density has been improved appreciably and efficiently.

B. Simulated Isotropic Magnetic Particles Niching Strategy

The magnetic force is one of the fundamental forces of
nature. When isotropic magnetic particles are close to each
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Fig. 9. Repulsive force drives isotropic magnetic particles moving in opposite
directions until the point of equilibrium. (a) Initialization. (b) Moves under
repulsion. (c) Keeps equilibrium.

other, the repulsive force will push them moving in opposite
directions. Given a limited boundary, isotropic magnetic par-
ticles will reach a point of equilibrium [29], [30], that all the
particles maintain similar distances from each other, as shown
in Fig. 9.

In [31] and [32], a novel niching technology was designed to
simulate the movements of isotropic magnetic particles, which
drive individuals to preserve uniform distance from each other
and spread to the whole Pareto front. The niching technology
not only does not need any niching parameter, but also can
obtain good distribution with much less population size.

Let f (i)
m be the mth objective value of the individual P(i)

t . The
maximum extension distance, MED, in the objective space is
defined in (2).

MED
(

P(i)
t

)
= TotalDist

(
P(i)

t

)
× NearDist

(
P(i)

t

)
(2)

where

TotalDist
(

P(i)
t

)
=

P∑

j=1

⎛

⎝

√√
√√

M∑

m=1

(
f (i)
m − f (j)

m

)2

⎞

⎠

NearDist
(

P(i)
t

)
= min

j,j �=i

√√√
√

M∑

m=1

(
f (i)
m − f (j)

m

)2
.

In this algorithm, the niching technique is further extended
to the decision space, and the maximum extension distance in
the decision space (MEDx) is defined according to (3).

MEDx
(

P(i)
t

)
= TotalDistX

(
P(i)

t

)
× NearDistX

(
P(i)

t

)
(3)

where

TotalDistX
(

P(i)
t

)
=

P∑

j=1

⎛

⎝

√√√√
N∑

n=1

(
x(i)

n − x(j)
n

)2

⎞

⎠

NearDistX
(

P(i)
t

)
= min

j,j �=i

√√√√
N∑

n=1

(
x(i)

n − x(j)
n

)2
.

In (3), P(i)
t refers to the ith individual in Population Pt at

the tth generation, and x(i)
n is the nth decision variable of P(i)

t .
TotalDistX(P(i)

t ) calculates the summation of Euclidean dis-
tances between P(i)

t and P(j)
t in the decision space. In order

to explore the entire decision space, our algorithm prefers
a greater value of TotalDistX(P(i)

t ), which implies the indi-
vidual P(i)

t moving away from the other individuals in the
decision space. The NearDistX(P(i)

t ) calculates the minimum

Algorithm 2 MaximumExtensionDistanceX

Input: Individual P(i)
t

Output: MEDx value of P(i)
t

1: TotalDistX = 0;
2: NearDistX = +∞;
3: for j = 1 to P
4: if j = i
5: continue;
6: end if
7: Distance = 0;
8: for n = 1 to N

9: Distance = Distance +
(

x(i)
n − x(j)

n

)2;
10: end for
11: Distance = sqrt(Distance)
12: TotalDistX = TotalDistX + Distance;
13: if Distance < NearDistX then NearDistX = Distance;
14: end for
15: MEDx = TotalDistX × NearDistX;

Euclidean distance between P(i)
t and P(j)

t . A greater value of
NearDistX(P(i)

t ) refers to a better individual distance.
The value of MEDx(P(i)

t ) is the result obtained by mul-
tiplying TotalDistX(P(i)

t ) and NearDistX(P(i)
t ). The greater

MEDx(P(i)
t ) means an individual become farther away from

the other individuals which may explore the new decision
region.

The computational complexity of the MEDx is O(NP),
where N is the number of decision variables and P is the
population size. The pseudocode of the MEDx is given in
Algorithm 2.

C. Overall Algorithm

To reduce the negative influence of excessive objective
space diversity on decision space diversity, the proposed DN-
MMOES solves the MMOP in two stages. The first stage
adopts the niching strategy only in the decision space, which
aims at finding well-converged solutions which maintain good
distribution in the decision space. In addition, the decision
density self-adaptive strategy is integrated to improve the
imbalanced densities within different Pareto subregions. The
second stage of the algorithm adopts double niching strategy
in both the decision and objective spaces, whose goal is to
improve the objective and decision distributions. The compu-
tational complexity of the proposed DN-MMOES is O(NP2),
where N is the number of decision variables and P is the
population size. The pseudocode of DN-MMOES is given in
Algorithm 3.

For each generation, the proposed evolution strategy uses
the Gaussian mutation [33] to generate new candidate indi-
viduals, which create new offspring x′

i by adding a random
value from a Gaussian distribution, as shown in

x′
i = xi + N(0, σ ). (4)

Let P(i)
t be the ith original solution in population Pt, and

NewP(i)
t be the newly mutated candidate solution, as shown in

lines 4 and 5 of Algorithm 3. If NewP(i)
t dominates P(i)

t , the
NewP(i)

t would replace the P(i)
t , as shown in lines 6 and 7 of

Algorithm 3.
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Algorithm 3 Proposed DN-MMOES Algorithm
1: Initialization Pt, t = 0

// the first stage
2: while (t < 1/2 maximum generation) {
3: for i = 1 to P {
4: NewP(i)

t = GaussMutation
(

P(i)
t

)

5: Objective Functions Evaluation (NewP(i)
t )

6: if (NewP(i)
t ≺ P

(i)
t ) {

7: P(i)
t = NewP(i)

t
8: else if (NewP(i)

t ⊀ P(i)
t ) and (P(i)

t ⊀ NewP(i)
t ) {

9: if DomCount
(

NewP(i)
t

)
< DomCount

(
P(i)

t

)
{

10: P(i)
t = NewP(i)

t
11: else if DomCount

(
NewP(i)

t

)
= DomCount

(
P(i)

t

)

12: if MEDx(NewP(i)
t )

MEDx(P
(i)
t )

> 1{
13: P(i)

t = NewP(i)
t

14: end if
15: end if
16: end if
17: end for
18: Decision Density Self-Adaptive Strategy ();
19: end while

// the second stage
20: while (t < maximum generation)
21: for i = 1 to P
22: NewP(i)

t = GaussMutation(P(i)
t )

23: Objective Functions Evaluation (NewP(i)
t )

24: if (NewP(i)
t ≺ P

(i)
t )

25: P(i)
t = NewP(i)

t
26: else if (NewP(i)

t ⊀ P(i)
t ) and (P(i)

t ⊀ NewP(i)
t )

27: if DomCount
(

NewP(i)
t

)
< DomCount

(
P(i)

t

)

28: P(i)
t = NewP(i)

t
29: else if DomCount

(
NewP(i)

t

)
= DomCount

(
P(i)

t

)

30: if
MEDx

(
NewP(i)

t

)

MEDx

(
P(i)

t

) > 1 and
MED

(
NewP(i)

t

)

MED
(

P(i)
t

) > 1

31: P(i)
t = NewP(i)

t
32: end if
33: end if
34: end if
35: end for
36: end while

If NewP(i)
t and P(i)

t are nondominated with respect to
each other, the values of their DomCount would be com-
pared. DomCount(P(i)

t ) is the function to calculate the
number of other solutions that dominate P(i)

t . If the
value of DomCount(NewP(i)

t ) is smaller than the value of
DomCount(P(i)

t ), which implies fewer solutions can domi-
nate NewP(i)

t . The NewP(i)
t would be accepted and replace

the P(i)
t . If the value of DomCount(NewP(i)

t ) is equal to the
value of DomCount(P(i)

t ), the value of maximum extension
distance would then be compared, as shown in lines 8–16 of
Algorithm 3.

In the first stage, if the MEDx(NewP(i)
t ) is greater than

MEDx(P(i)
t ), the NewP(i)

t would replace P(i)
t which implies the

mutated new candidate solution NewP(i)
t is superior to the orig-

inal P(i)
t . On the contrary, if the MEDx(NewP(i)

t ) is not greater

Fig. 10. Developed GUI program for the proposed DN-MMOES algorithm.

than MEDx(P(i)
t ), we should neglect NewP(i)

t , as can be seen
lines 12–14. Finally, the decision density self-adaptive strategy
is integrated to improve the decision densities in imbalanced
Pareto subregions.

In the second stage, if the MED(NewP(i)
t ) and

MEDx(NewP(i)
t ) are greater than those of the original

MED(P(i)
t ) and MEDx(P(i)

t ), that means the mutated new can-
didate solution NewP(i)

t is considered superior to the original
P(i)

t . The NewP(i)
t would replace P(i)

t , as shown in lines 30–32.

IV. EXPERIMENTAL RESULTS

A. Competing State-of-the-Art MMOEAs and Performance
Indicators

To validate the performance, DN-MMOES is compared
with eight state-of-the-art MMOEAs designed specifically for
MMOPs, including Omnioptimizer [14], CPDEA [19],
TriMOEA-TA&R [18], MO_Ring_PSO_SCD [20],
MOEA/D-AD [22], NIMMO [25], MMOCLRPSO [34],
and NMOHSA [35]. Four of these competing approaches are
Pareto-based MMOEAs with different decision niching strate-
gies. MOEA/D-AD is chosen from the decomposition-based
group, while NIMMO is the representative of the indicator-
based MMOEA. MMOCLRPSO and NMOHSA are among
the top three MMOEAs in CEC’2019 MMOP competition
session.

These competing algorithms are evaluated on 23
CEC 2019 competition MMOPs [36], twelve IDMP test
MMOPs [19], and a real-world map-based test problem [37].
These MMOPs are characterized by concave, convex, and
sphere Pareto fronts, and the number of equivalent Pareto
subsets varies from 2, 4, 9–27.

The inverted generational distance in the objective
space (IGD) [38] and in the decision space (IGDx) [39]
are adopted to evaluate the performance of these competing
algorithms. For each test functions, 400 true Pareto optimal
solutions are sampled. The IGD indicator is defined in (4),
which calculates the average Euclidean distance from these
reference true PF to the obtained objective values. The smaller
IGD value means the obtained solutions have better diversity
and convergence in the objective space

IGD =
(∑|PF|

i=1 d2
i

)1/2

|PF| (5)
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Fig. 11. Experimental results on SYM-PART and Omni test problem by DN-MMOES. (a) SYM-PART 1. (b) SYM-PART 2. (c) SYM-PART 3. (d) Omni
Test Problem.

where di represents the Euclidean distance between ith refer-
ence objective vector and obtained nearest objective values.

On the other hand, the IGDx is defined in (5), which cal-
culate the average Euclidean distance from the true PS to
the obtained solutions. The smaller IGDx value implies the
obtained solutions have better diversity and convergence in
the decision space

IGDX =
(∑|PS|

j=1 d2
j

)1/2

|PS| (6)

where dj represents the Euclidean distance between the jth ref-
erence decision vector and obtained nearest decision variables.

The DN-MMOES algorithm and a GUI program have been
implemented to facilitate the experiments, as shown in Fig. 10.
The program and source code are available on the GitHub
https://github.com/MaOEA/DN-MMOES. For the sake of con-
venience, interested readers could verify the performance and
obtain the source code.

In our experiment, the population size, P, is set to 200,
while the maximum iteration is set to 1000 as well as
200 000 maximum function evaluation. For the Gaussian muta-
tion parameters of DN-MMOES, distribution mean, μ, is set
to 0, and standard deviation, σ , is set to 0.2. Given an MMOP,
different Pareto subregions may be expanding or contracting.
During the long evolutionary process, a fixed value of radius
parameter δ could lead to inappropriate density estimate. In
our algorithm, the radius percent, δ, is set to a random number
between 1 and 10. The experimental results show a satisfactory
performance. For all competing algorithms, the SBX distri-
bution index [40] and the Polynomial mutation distribution
index [41] are set to 20, respectively. We set the other param-
eters the same as the original articles. In order to make a fair
comparison, all the competing algorithms are run 30 times
independently for every MMOP. The parameter settings of

other compared algorithms are provided in the Supplemental
Material.

B. Performance on Test MMOPs

Fig. 11 shows the experimental results on MMOP test
suite of CEC2019 competition by DN-MMOES. As shown
in Fig. 11(a)–(c), although SYM-PART test problems contain
rotated and transformed Pareto-optimal sets, DN-MMOES can
find all the nine Pareto subregions for the SYM-PART prob-
lems, and obtain the quality converged and distributed PF. In
each subfigure, the figure on the left refers to the PS distribu-
tion in the decision space, while the one on the right refers to
the PF distribution in the objective space.

As can be seen from Fig. 11(d), DN-MMOES find
27 multiple subgroups of optimal solutions on Omni test
problem simultaneously and obtains the well-distributed and
well-converged solutions in both the objective and decision
spaces. In spite of the population size being 200, all the Pareto
subregions contain similar number of solutions and similar
densities.

As shown in Fig. 12, for most of the MMF MMOPs, the
DN-MMOES can consistently find complete sets of global
Pareto optimal solutions simultaneously, and the optimal
solutions is well-distributed and well-converged in both the
objective and decision spaces. However, the proposed DN-
MMOES cannot identify the local optimal solutions for six
MMOPs, including MMF10-MMF13, MMF15 and MMF15a.
Because some local optimal solutions may be dominated by
global optimal solutions, it is much complicated to obtain local
PS for these MMOPs.

C. Comparison With Competitive MMOEAs

Table I shows the IGD measures that obtained by the nine
competing algorithms. The proposed DN-MMOES wins in 21
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Fig. 12. Experimental results on CEC2019 competition MMOPs by DN-MMOES. (a) MMF1. (b) MMF2. (c) MMF3. (d) MMF4 (e) MMF5. (f) MMF6.
(g) MMF7. (h) MMF8. (i) MMF9. (j) MMF10. (k) MMF11. (l) MMF12. (m) MMF13. (n) MMF14. (o) MMF14a. (p) MMF15. (q) MMF15a. (r) MMF1z.

test instances, including two SYM-PART problems, 14 MMF
test problems, and five IDMP problems. These MMOPs char-
acterized by concave, convex, and sphere Pareto fronts. The

results indicate the ability of the proposed DN-MMOES to
find well-diversified and well-converged Pareto fronts. For
the remaining MMOPs, CPDEA and NMOHSA wins eight
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TABLE I
AVERAGE IGD VALUES OVER 30 RUNS ON BENCHMARK INSTANCES (POPULATION SIZE 200),

WHERE THE BEST MEAN IS SHOWN IN A GRAY BACKGROUND

and three test instances. MO_RING_PSO_SCD, Omni opti-
mizer, NIMMO and MMOCLRPSO wins one test instance,
respectively.

Table II shows the IGDx values that obtained by the
nine competing algorithms on 36 MMOPs. Compared with
the other competing MMOEAs, DN-MMOES obtains signif-
icantly better IGDx performance on eleven MMOPs. From
these MMOP instances, some of the PSs are contracting,
while others spread all over the decision space. The results
clearly demonstrate its ability to find multiple groups of
well-distributed and well-converged optimal solutions with
various problem characterizes. The NIMMO and CPDEA win
eight test instances. TriMOEA-TA&R and NMOHSA also win
in three test instances, respectively. MOEA/D-AD wins two
MMOP instances.

As can be seen from Tables I and II, the proposed
DN-MMOES obtain better performance on most of
the CEC2019 competition MMOPs. The NIMMO and
NMOHSA shows better IGDx performance on MMOPs with

local Pareto optimal solutions. CPDEA and NIMMO obtained
better performance on IDMP test suite, while DN-MMOES
is not far behind.

D. IGD Union Indicator for MMOPs

For any given test instance, two competing algorithms A1
and A2 could obtain two groups of IGD and IGDx values.
At times, one algorithm could obtain a better IGD value
in the objective space than another, and at the same time,
it could obtain a worse IGDx value in the decision spaces
or vice versa. In order to compare the performance of two
MMOEAs on the same test instance, we propose an IGD indi-
cator, IGDUnion(A1, A2), which calculates the difference of the
summation of ratios of IGD and IGDx, as shown in

IGDUnion(A1, A2) =
(

IGD(A1)

IGD(A2)
+ IGDx(A1)

IGDx(A2)

)

−
(

IGD(A2)

IGD(A1)
+ IGDx(A2)

IGDx(A1)

)
(7)
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TABLE II
AVERAGE IGDX VALUES OVER 30 RUNS ON BENCHMARK INSTANCES (POPULATION SIZE 200),

WHERE THE BEST MEAN IS SHOWN IN A GRAY BACKGROUND

where IGD(A) and IGDx(A) denote the IGD and IGDx values
of algorithm A.

The proposed IGDUnion(A1, A2) consider IGD and IGDx
values as a whole, as shown in (7). When the value of
IGDUnion(A1, A2) is smaller than zero, which means A1 obtain
a better overall performance than A2 on the given test instance.
When the IGDUnion(A1, A2) is equal to zero, the performance
of the two algorithms is approximately the same. If the
IGDUnion(A1, A2) is greater than zero, this implies A1 obtains
a poor overall performance than A2. The absolute value of
IGDUnion indicates the degree of that algorithm A1 more
superior to or much worse than algorithm A2

IGDUnion(A1, A2) =
⎧
⎨

⎩

< 0, A1 is better than A2
= 0, A1 is equal to A2
> 0, A1 is worse than A2.

(8)

If the IGD value of A1 is smaller than that of A2, which
means A1 obtains a better performance than A2 in the objec-
tive space, and the IGD ratio of A1 and A2 should be smaller

than one. When the IGD values of A1 and A2 are the same,
the performance of the two algorithms is approximately sim-
ilar, and the ratio of IGD values is one. If the IGD value
of A1 is greater than that of A2, which means A1 obtains
a worse performance than A2 in the objective space, and the
IGD ratio of A1 and A2 should be greater than one. The ratio
of IGDx values can be interpreted in a similar way with IGD
values. It is worthy to note that value of IGDUnion(A2, A1)

is the negative value of IGDUnion(A1, A2), providing the same
and consistent conclusion, as shown in the following equation:

IGDUnion(A2, A1) = −IGDUnion(A1, A2). (9)

Table III shows the IGDUnion values of DN-MMOES against
eight competing MMOEAs on 36 MMOP instances. For
example, DN-MMOES obtains a better IGDx value (i.e.,
0.039068) than that of NMOHSA (i.e., 0.108492) on SYM-
PART3 instance. On the contrary, the DN-MMOES obtain
a worse IGD value (i.e., 0.009783) than that of NMOHSA (i.e.,
0.009408) on SYM-PART3 instance. The IGD union value
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TABLE III
IGD UNION INDICATOR VALUES OF DN-MMOES AGAINST EIGHT COMPETING MMOEAS ON BENCHMARK INSTANCES

is calculated according to (6). Although the IGD value of
DN-MMOES is slightly greater than that of NMOHSA, the
IGDx value of DN-MMOES is much smaller than that of
NMOHSA. The overall IGD union value is −2.338713, which
implies DN-MMOES performs better than NMOHSA on
SYM-PART3 instance, indeed significantly better due to the
absolute value of IGDUnion(DN − MMOES, NMOHSA)

IGDUnion(DN − MMOES, NMOHSA)

=
(

IGD(DN − MMOES)

IGD(NMOHSA)
+ IGDx(DN − MMOES)

IGDx(NMOHSA)

)

−
(

IGD(NMOHSA)

IGD(DN − MMOES)
+ IGDx(NMOHSA)

IGDx(DN − MMOES)

)

=
(

0.009783

0.009408
+ 0.039068

0.108492

)
−

(
0.009408

0.009783
+ 0.108492

0.039068

)

= (1.039859 + 0.360100) − (0.961668 + 2.777004)

= −2.338713.

For some test problems, the difference between their IGD
values is much larger or much smaller than the difference
between their IGDx values. The proposed IGDUnion indicator

factors the respective ratios to evaluate the difference between
the two competing algorithms. For example, it is assumed that
the IGDx values obtained by DN-MMOES and NMOHSA are
3.9068 and 10.8492, respectively, which are 100 times greater
than the original IGDx values. Although the magnitudes of
IGD and IGDx are quite different, the IGDUnion indicator can
reflect the true performance in both spaces faithfully. The value
of the IGDUnion(DN − MMOES, NMOHSA) is shown as

IGDUnion(DN − MMOES, NMOHSA)

=
(

IGD(DN − MMOES)

IGD(NMOHSA)
+ IGDx(DN − MMOES)

IGDx(NMOHSA)

)

−
(

IGD(NMOHSA)

IGD(DN − MMOES)
+ IGDx(NMOHSA)

IGDx(DN − MMOES)

)

=
(

0.009783

0.009408
+ 3.9068

10.8492

)
−

(
0.009408

0.009783
+ 10.8492

3.9068

)

= (1.039859 + 0.360100) − (0.961668 + 2.777004)

= −2.338713.

As can be seen from Table III, most of the IGDUnion
values are smaller than zero, except in few cases which are

Authorized licensed use limited to: Tsinghua University. Downloaded on September 14,2023 at 01:50:53 UTC from IEEE Xplore.  Restrictions apply. 



766 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 25, NO. 4, AUGUST 2021

Fig. 13. Experimental results on SYM-PART3 by DN-MMOES without and
with density self-adaptive strategy.

highlighted in bold face. The experimental results undoubt-
edly demonstrate that DN-MMOES performs significantly
better than eight competing MMOEAs. Compared with
MO_Ring_PSO_SCD, TriMOEA-TA&R, MMOCLRPSO,
NMOHSA, MOEA/D-AD, and Omnioptimizer, DN-MMOES
wins more than 33 out of 36 test instances on IGDUnion
indicator. Although CPDEA and NIMMO obtain good
performance on IDMP test problem, DN-MMOES wins 26
out of 26 test instances on IGDUnion indicator. Obviously,
when we consider IGD and IGDx values as a whole, DN-
MMOES obtains significant better IGDUnion performance
than other MMOEAs.

E. Discussion on Density Self-Adapted Strategy

For addressing the MMOPs, a novel decision density self-
adaptive strategy is proposed to improve the distribution
in the decision space. In order to study the role of the
density self-adaptive strategy, we compare the performance
with and without the density self-adaptive strategy on SYM-
PART3. The SYM-PART3 test problem has nine rotated and
transformed Pareto-optimal subsets.

In this experiment, our algorithm only adopts MEDx to
improve the decision space distribution. In order to observe
the improvement in the decision space more clearly, the pop-
ulation size is set to 45. We do not use density self-adaptive
strategy in the first 200 generations, and the obtained optimal
solutions are shown in Fig. 13(a). Obviously, some of the
Pareto subregions may be overly crowded, while others are

Fig. 14. Experimental results on SYM-PART3 by decision niching and
double niching.

rather sparse. In the following 200 generations, the density
self-adaptive strategy is activated to improve the imbalanced
distribution. As shown in Fig. 13(b), the distribution of the
obtained optimal solutions has been improved significantly.
Fig. 13(c) shows the obtained IGDx curve on SYM-PART3, as
the algorithm with density self-adaptive strategy has achieved
a better performance than that without adopting the strategy.

F. Discussion on Two-Stage Double Niched Strategy

To validate the proposed two-stage double niched strategy,
we compare the performances of DN-MMOES by replacing
decision niching ([MEDx(NewP(i)

t )]/[MEDx(P
(i)
t )]) > 1 with

double niching ([MEDx(NewP(i)
t )]/[MEDx(P

(i)
t )]) > 1 and

([MED(NewP(i)
t )]/[MED(P(i)

t )]) > 1 in both the objective and
decision spaces. In the preceding 200 generations, only MEDx
is incorporated to improve the decision space distribution, and
the obtained optimal solutions are shown in Fig. 14(a). In spite
of the obtained optimal solutions are well-distributed and well-
converged in Pareto subregions, the Pareto front is not well
distributed in the objective space.

In the following 200 generations, both MED and MEDx are
applied to improve the distributions in the decision and objec-
tive spaces. As shown in Fig. 14(b), the distribution of Pareto
front has been improved appreciably. Fig. 14(c) shows the
obtained IGD and IGDx curves, as the double niched strategy
has achieved a better performance than that of niched only in
the decision space.
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V. CONCLUSION

In this article, a two-stage double niched evolutionary algo-
rithm is proposed for solving MMOPs based on evolution
strategy. First, new mutated candidate solution need only to
be compared with the original solution, which can avoid the
negative influence on the mating pool. Second, the proposed
algorithm solves the MMOPs in two stages. The first stage
adopts the niching strategy in the decision space, while the sec-
ond stage adapts double niching strategy in both the objective
and decision spaces. In contrast to traditional MMOEAs, the
two stages strategy can reduce the phenomenon that some indi-
viduals with significantly better objective space distribution
may replace the individuals with slightly better decision space
distribution. Third, an effective decision density self-adaptive
strategy is designed for improving the imbalanced density in
the decision space. Fourth, the IGD union indicator IGDUnion
is proposed to evaluate IGDx and IGD values as a whole.
The performance of DN-MMOES is compared against eight
state-of-the-art MMOEAs, including MO_Ring_PSO_SCD,
Omnioptimizer, MOEA/D-AD, NIMMO, TriMOEA-TA&R,
CPDEA, MMOCLRPSO, and NMOHSA. The experimental
results indicate the DN-MMOES provides better performance
than competing MMOEAs on 36 test MMOPs with IGD,
IGDx, IGDUnion indicators.

Although the proposed DN-MMOES can find multiple
groups of equivalent PS efficiently, finding the local Pareto
optimal solutions of MMOPs still leaves room for improve-
ment. Because some local optimal solutions may be dominated
by global optimal solutions, it is much complicated to obtain
local PS for MMOPs. We plan to design and incorporate some
strategies to improve the performances of local searching.
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