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In recent years, many different membrane-inspired evolutionary algorithms have been
proposed to solve various complex optimization problems. Considering membrane sys-
tems’ powerful computing performance and parallel capability, it has outstanding potential
in solving multi-task optimization problems. However, there is no research to explore the
performance of membrane-inspired evolutionary algorithms in solving multi-task opti-
mization problems. In this paper, a novel membrane-inspired evolutionary framework
with a hybrid dynamic membrane structure is proposed to solve the multi-objective
multi-task optimization problems. First, a novel membrane-inspired two-stage evolution
strategy algorithm is proposed as the algorithm in the membrane to improve the conver-
gence of the algorithm and the diversity of multisets. Second, the information molecule
concentration vector is proposed to reduce negative information transfer. The information
molecule concentration vector is inspired by the binding process of information molecules
and receptors and can control the information transfer probability adaptively. Finally, com-
prehensive experimental results show that the proposed algorithm performs better than
most advanced multi-objective evolutionary multitasking algorithms.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

Many scientific and engineering applications require simultaneous optimization of multiple conflicting objective func-
tions. These problems are collectively referred to as multi-objective optimization problems (MOPs). Without loss of gener-
ality, assuming the problem is a minimization problem, a MOP can be expressed as
Min
x2X

F xð Þ ¼ ðf 1 xð Þ; f 2 xð Þ; f 3 xð Þ; � � � ; f M xð ÞÞ ð1Þ
where x ¼ x1; x2; x3; � � � ; xDð Þ�X is a D-dimensional decision vector,X represents the feasible region in the decision space, and
F(x) denotes a set of objective functions. Due to the contradictory objective functions, it is impossible to search out a single
solution to optimize all objective functions. Thus, the Pareto optimal concept is proposed to seek out a set of optimal solu-
tions that can tradeoff objective functions. Given two decision vectors x and y, if 8i 2 1;2;3 � � � ;Mf g f iðxÞ � f iðyÞ and
9j 2 1;2;3 � � �Mf g f jðxÞ < f jðyÞ, then y is Pareto dominated by x, expressed as x�y. If no solution can dominate the solution
x* in the population, then x* is a non-dominated solution or a Pareto optimal solution. The set of all non-dominated solutions
is Pareto optimal set (PS), and its corresponding mapping in the objective space is Pareto optimal front (PF) [1].
.
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Profit from the efficient search mode based on population, multi-objective evolutionary algorithms (MOEAs) can search
out the PF with great convergence and distribution in a single run and have been widely used to solve MOPs. MOEAs can be
divided into three main categories, Pareto dominance-based algorithms [2,3], algorithms based on indicators [4,5], and
decomposition-based algorithms [6,7]. These MOEAs are designed to solve one MOP at a time, and when faced with a
new problem, the population needs to be reinitialized. However, in the real world, many MOPs are related, and the knowl-
edge gained from solving one task can be reused by related tasks and bring positive effects.

Inspired by multi-task learning and transfer learning in machine learning [8,9], Gupta et al. [10] proposed an optimization
paradigm that utilizes the correlation between multiple optimization tasks to process these tasks simultaneously, called
multi-task optimization (MTO). Unlike traditional MOEAs, evolutionary multitasking (EMT) algorithms are committed to
finding the optimal solution (set) of all the problems at one time and improving the overall search speed by using the rel-
evance of simultaneous optimization tasks. Because of its powerful search ability and the forward-looking theoretical view-
point, MTO has become a research hotspot in the field of evolutionary computation [11–14].

Membrane computing is a distributed computing model inspired by the compartmentalized structures and functions of
biological membranes in cells [15]. Membrane computing serves as the computational model’s working mechanism by
abstracting the chemical reactions between the membranes and the chemical reactions in the membrane regions. The mem-
brane system, referred to as the P system, has strong parallelism to solve complex problems in polynomial time. And it has
been proved to have the same computing power as the Turing general computing model [16,17]. Due to the P system’s out-
standing performance and natural parallel capability, the membrane system-inspired optimization algorithm (MIEA) is pro-
posed, which combines the membrane structure, evolutionary rules, and computing mechanisms with the search principles
of the meta-heuristic algorithm. The evolutionary algorithms nested in the membrane system structure are called algorithms
in the membrane (AIMs). After twenty years of development, multitudinous MIEAs have been proposed to solve various
complex optimization problems in the real-world [18–23].

Considering the membrane system has powerful computing performance and parallel capability, it can be envisaged that
the outstanding potential of MIEAs when handling multitudinous tasks simultaneously. However, there is no research study-
ing the performance of MIEAs in solving MTO problems. Therefore, this paper proposes a multi-objective multi-task evolu-
tionary framework based on membrane system (EMT-MOMIEA) to solve the multi-objective multi-task optimization
(MOMTO) problems. First, the overall algorithm is contained in a skin membrane, and each task is involved in a separate
sub-membrane. The rewrite rules are introduced to evolve symbol objects to converge. The communication rules are
adopted to exchange and reuse information between the membranes that solve different tasks. Second, a novel membrane
system-based two-stage evolution strategy algorithm is proposed as AIM. In the first stage, a novel differential evolution
strategy based on dynamic membrane structure (DMS-DES) is utilized to simultaneously perturb all decision variables to
optimize linearly non-separable variables roughly. In the second stage, the precision controllable mutation-based evolution
strategy (PCM-ES) is applied to mutate a single decision variable to optimize the linearly separable decision variables. Third,
inspired by the binding process of information molecules and receptors during information exchange between cells, the
information molecule concentration vector (IMCV) concept is proposed. The IMCV can dynamically adjust the information
transfer probability and reduce negative information transfer. Finally, comprehensive empirical experiments are carried
out on the classical, complex MOMTO test suite [43,44] and the multi-objective many-task optimization (MOMaTO) bench-
mark test suite [44] to verify the efficacy of EMT-MOMIEA. The experiment results clearly show that the proposed EMT-
MOMIEA provides a competitive edge over the state-of-the-art EMT algorithms. Comparative experiments are carried out
on the proposed operators to verify their effectiveness. Specifically, the main contributions can be summarized as follows:

(1) Inspired by the cell-like membrane system, a novel membrane-inspired evolutionary framework with a hybrid
dynamic membrane structure is proposed to solve the MOMTO problems.

(2) To improve the convergence of the algorithm and the diversity of multisets, a novel membrane system-based two-
stage evolution strategy algorithm is proposed as AIM.

(3) The IMCV concept is proposed to control the information transfer intensity between different tasks from the decision
variable level to avoid the negative transfer.

(4) The performance of EMT-MOMIEA is investigated in various test suites and compared with the state-of-the-art EMT
algorithms. Both strengths and weaknesses of the proposed method are discussed.

The remaining sections are organized as follows. Section 2 conducts a comprehensive survey of related works. Section 3
details the proposed EMT-MOMIEA. Section 4 provides the extensive experimental results to verify the effectiveness of EMT-
MOMIEA. Finally, section 5 summarizes the paper and outline future research directions.
2. Related work

2.1. Membrane-inspired evolutionary algorithms

MIEA is a novel heuristic algorithm developed by combining the P system’s membrane structure, evolutionary rules, and
computational mechanism with the search principle of the evolutionary algorithm. Inspired by the cell-like P system, the
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hierarchical structure MIEAs have been widely used to solve real-world problems due to their diversified structure and rich
computing rules [18,19,35–40]. The proposed EMT-MOMIEA is also based on the hierarchical structure.

Inspired by the structures and functions of living cells, the essential components of a cell-like P system include membrane
structure, reaction rules, and multisets. As shown in Fig. 1, the membrane structure is the hierarchical arrangement of mem-
branes. The outermost membrane is called the skin membrane, which separates the P system from the external environment.
The membrane that does not contain the sub-membrane is called the elementary membrane. Each membrane defines a
region. For an elementary membrane, the region is the space it has. While for a non-elementary membrane, the region refers
to the space between itself and the membrane it directly contains. The region includes multisets and reaction rules. The mul-
tiset is the collection of symbol objects which abstract the elements in living cells. Reaction rules simulate the chemical reac-
tions and substances flow in biological membranes. The evolution of symbol objects can be realized by executing reaction
rules in the region. When the reactions in all regions have been executed, the multiset is output to the environment or
the designated membrane as the final result.

According to the cell membrane structure, the hierarchical MIEA can be classified as nest membrane structure (NMS),
one-level membrane structure (OLMS), hybrid membrane structure (HMS), and dynamic membrane structure (DMS). In
NMS, each membrane only contains one sub-membrane, the membrane is nested with each other, and the innermost mem-
brane contains the final optimal solution [18,19]. In the evolution process, the intermediate membrane continuously trans-
mits the superior solution to the nearby inner layer and the inferior solution to the adjacent outer layer through the
communication rule. Each region assembles a unique AIM that can independently apply diverse rewrite rules to evolve
objects.

Concerning OLMS, there are only m elementary membranes in the skin membrane, and each membrane can have unique
AIM and reaction rules. The reaction rules mainly include rewrite rules and communication rules. The communication rule
sends the fittest object from each elementary membrane as the local optimum to the skin membrane. Then, the fittest object
in the skin membrane is as the global optimum transmitted back to each elementary membrane. Therefore, the OLMS can
balance exploration and exploitation and is more efficient than the NMS. The OLMS has been combined with various AIMs
and applied to various practical and benchmark problems [35,36].

HMS and DMS have more flexible membrane structures and diverse reaction rules. HMS [37,38] is the hybridization of
NMS and OLMS that multiple HMS are compacted in a single OLMS structure. DMS [39,40] can dynamically adjust membrane
structure through division rule and dissolution rule in the evolutionary process, contributing to the algorithm adopting dis-
parate operators in different evolution stages to balance exploration and exploitation. Through the division rule, the mem-
brane can be divided into several sub-membranes. The dissolution rule can dissolve the membrane to disperse all the objects
to the outer membrane and redistribute the object resource.
2.2. Evolutionary multitasking

Current optimization algorithms often start the search at the ground zero knowledge state and suppose that the opti-
mized problems are independent. After dealing with a problem, the optimizer’s ability to solve similar problems will not
be improved. However, many problems are interrelated and have similar characteristics. For example, Rastrigin function
and Sphere function have the same global optimal point, located at (x1 = 0, x2 = 0). Rastrigin function possesses multiple local
minima and is hard to find the global optimum, but the Sphere function has only one minimum value and is easier to solve,
Fig. 1. The basic structure of the membrane systems.
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Fig. 2. Schematic diagram of Sphere function and Rastrigin function. (a) Contour map with Rastrigin function of 2D decision variables, (b) Contour map of
Sphere function with 2D decision variables, (c) Function graph of Rastrigin function, and Sphere function with 1D decision variable.
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as shown in Fig. 2. If the population information when optimizing the Sphere can be reused in the process of optimizing the
Rastrigin function, it can accelerate the Rastrigin function’s optimization.

Inspired by multi-task learning and transfer learning in machine learning [8,9], the EMT theory is proposed that the
knowledge obtained from one problem can stimulate related issues. The EMT theory aims to accelerate the simultaneous
optimization of multiple problems by reusing similar information to improve the overall convergence performance. The
paradigm of optimizing multiple tasks simultaneously is called MTO. The source of helpful information is called the source
task, and the task of reusing information is referred to as the target task.

Without loss of generality, assuming K simultaneous optimization tasks are all minimization problems, MTO’s formal rep-
resentation is shown as Eq. (2). x�

j represents the optimum solution (set) of the jth task Tj (j = 1, 2, . . .K).
fx�
1;x

�
2; � � � ;x�

Kg ¼ fargminT1 x1ð Þ; argminT2 x2ð Þ; � � � ; argminTK xKð Þg ð2Þ

In the problem paradigm, the task Tj can be a single objective optimization problem (SOP) or a MOP. If an MTO problem con-
tains at least one MOP, it can be called a MOMTO problem.

Inspired by the multifactorial inheritance theory, Gupta et al. [10] first proposed a general EMT framework, namely mul-
tifactorial evolutionary algorithm (MFEA). Each task is regarded as an independent environmental influence bias that affects
the evolution of offspring. In a multifactorial environment, the individual has different fitness in different environments, and
the index of the fittest environment is marked as the skill factor. Following Darwinism, the MFEA paradigm proposed two
strategies, vertical cultural transmission, and assortative mating, to realize information transfer in the multifactorial envi-
ronment. The vertical cultural transmission theory states that the offspring should inherit its parent’s adept task, and the
individual will only be evaluated on the task according to its skill factor. Specifically, if the offspring has only one parent,
it directly inherits the parent’s skill factor. Otherwise, it inherits the skill factor from either parent with equal probability.
The assortative mating theory is proposed to control the information transfer intensity across tasks. It points out that only
individuals with the same skill factor can mate freely. In contrast, individuals with different skill factors must satisfy a prob-
ability threshold, namely random mating probability (rmp), which indicates the information transfer intensity across tasks.

However, the information transfer is not necessarily effective, and negative transfer often occurs. The negative transfer
means that the solution generated after the target task receives the information is inferior to the offspring without the trans-
fer. Fig. 3 shows the performance on test problems [43] after information transfer [10] by simulated binary crossover oper-
ator (SBX) every 50 generations. As shown in Fig. 3(a), for the PIHS1 problem, the information obtained through SBX from
PIHS2 is valuable that can make PIHS1 converge quickly within 200 generations, which means a positive transfer. For the
PILS2 problem, the information from PILS1 interferes with PILS20s convergence, which indicates a negative transfer, as shown
in Fig. 3(b).

Current EMT algorithms inherit the MFEA framework and focus on improving search efficiency and avoiding negative
information transfer. They can be classified into five categories, including methods for improving knowledge transfer strate-
gies [24,25], approaches based on allocating search resources [26,27], methods for search space mapping [28,29], methods
based on selecting optimal source tasks [30,31], and improving search strategies approaches [32–34]. The proposed EMT-
MOMIEA put forward the information transfer method based on IMCV to improve knowledge transfer efficiency. A mem-
brane system-based two-stage evolution strategy algorithm is also proposed as AIM from the aspect of enhancing search
efficiency.

3. Proposed algorithm

This section introduces the proposed multi-objective multi-task evolutionary framework based on membrane system
(EMT-MOMIEA), the proposed two-stage membrane system-based evolution strategy algorithm, and the proposed IMCV-
based information transfer strategy.
239



Fig. 3. Illustration of positive transfer and negative transfer between tasks.
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3.1. The framework of EMT-MOMIEA

The main framework of EMT-MOMIEA is summarized in Algorithm 1. First, according to Algorithm 2, initialize the mem-
brane structure and multiset in line 1. In Algorithm 2, first, the skin membrane is initialized and the division rule is called to
generate K sub-membranes. Each sub-membrane is used to optimize an independent task. The division rule is shown in Eq.
(3), where n is the number of sub-membranes, []0 represents the skin membrane, and []i represents the ith sub-membrane.
Then, the division rule is utilized in each sub-membrane to generate an inner membrane to implement the two-stage evo-
lution strategy algorithm. Each task is allocated the same computing resources, and N symbol objects are equally distributed
to K sub-membranes. For a single symbol object xi in the kth sub-membrane, initialize it randomly between the upper and
lower bounds of the kth task, assign it to skill factor k, and evaluate it on the kth task.

Division rule:
½ �0 ! ½ �1; ½ �2; ½ �3; . . . ½ �i . . . ; ½ �n�1; ½ �n
� �

0 ð3Þ
Algorithm 1
The overall framework of EMT-MOMIEA

Input: N: the total number of symbol objects, K: the number of tasks.
Output: the final multisets.
1. Initialize the membrane structure and the symbol objects according to Algorithm 2.
2. For each kth inner membrane in K inner membranes
3. DMS-DES (kth sub-multiset) as Algorithm 3.
4. End for
5. Call Dissolution rule to release all the inner membranes.
6. For kth sub-membrane in K sub-membranes
7. j = random(K), j–k.

8. Initialize the information molecule concentration vector imcv
���!K ¼ 0:5

�!
.

9. End for
10. While the stop criterion is not met do
11. For kth sub-membrane in K sub-membranes

12. ngc��! = 0
!
, ngt
�!

= 0
!
, nsc�! = 0

!
, nst
�!

= 0
!
.

13 NS = Obtain the non-dominated solution set (kth sub-multiset) according to Algorithm 4.
14. For each symbol object x in kth sub-multiset
15. For each d dimension
16. If d � DimMin then
17. o, Istransfer = Crossover with communication rule based on IMCV (x, j) as Algorithm 6.
18. End if
240
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19. o = PCM-ES (o) according to Algorithm 5.
20. Update the influence factor of IMCV according to Algorithm 7.
21. End for
22. End for
23. Update the IMCV according to Algorithm 8.
24. End for
25. End while
26. Call Dissolution rule to release all the sub-membranes to the skin membrane.

After initializing the membrane structure, the DMS-DES is applied to evolve the multiset in each inner membrane according
to Algorithm 3 in line 3. The dissolution rule is used to dissolve the membrane structure and release all the multisets into
the sub-membranes to proceed to the next evolution stage. The dissolution rule is shown in formula (4). After the ith mem-
brane structure is dissolved, the symbol objects are released into the adjacent outer membrane containing the ith
membrane.

Dissolution rule:
½ x½ �i�outter ! x½ �outter ð4Þ

Then, a random task j is selected from K tasks as the source task for one sub-membrane, where j– k. Afterward, initialize the

information molecule concentration vector imcv
���!

of the kth task as a DimMin dimensional all-zero vector where
DimMin = min {Dimj, Dimk}. Next, traverse and evolve all sub-membranes until the stop condition is reached. In the kth

sub-membrane, initialize the influence factors of imcv
���!

as DimMin dimensional vectors, which are ngc��!, ngt
�!

, nsc�! and nst
�!

in line

12. ngc��! and ngt
�!

denote the number of offspring generated by conventional crossover and generated by transfer crossover,

respectively. nsc�! and nst
�!

represent the number of offspring superior to parents generated by conventional crossover and
generated by transfer crossover, respectively. Afterward, the non-dominated solution set in the current kth sub-multiset
is obtained by Algorithm 4 in line 13. Next, each symbol object x in the sub-multiset evolves by the crossover with commu-
nication rule based on IMCV as shown in Algorithm 6 in line 17. Then, symbol object x is evolved using PCM-ES according to
Algorithm 5 in line 19. After a symbol object has evolved, the influence factors of IMCV are updated according to Algorithm
7 in line 20. After all the individuals in the kth sub-multiset have been evolved, update the IMCV according to Algorithm 8 in
line 23. Finally, after all the evolution processes are over, call the Dissolution rule to release all the sub-membranes to the
skin membrane. The flowchart of the proposed EMT-MOMIEA is indicated in Fig. 4, and the membrane structure of the pro-
posed EMT-MOMIEA is shown in Fig. 5. The details of the proposed two-stage evolution strategy algorithm based on the
membrane system and the proposed information transfer rule based on IMCV are described in the following subsections.

Algorithm 2
The pseudocode of Initialization.

Input: N: the total number of the symbol objects, K: the total number of the tasks.
Output: The initial skin membrane and K sub-membranes with initial multisets.
1. Create the skin membrane.
2. Call the Division rule to create K sub-membranes.
3. For each kth sub-membrane in the K sub-membranes
4. Call the Division rule to create one inner membrane.
5. Assign N=Kb c symbol objects to the kth sub-membrane.
6. For each symbol object xi in the kth sub-membrane
7. For each dimension d of the xi do

8. xdi ¼ Lowd
k þ randomðUpdk � Lowd

kÞ
9. End for
10. Assign skill factor k to xi.
11. Evaluate the xi for the task k.
12. End for
13. End for
241
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Fig. 4. The flowchart of the proposed EMT-MOMIEA.
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3.2. Two-stage evolution strategy algorithm based on membrane system

Real-world problems often have parameter interactions which make decision variables linearly non-separable. The lin-
early non-separable means no D-1 dimensional hyperplane that can separate the D dimensional space. Problems with
parameter interactions are always difficult to solve. For example, take one single-objective minimum optimization problem
with two-dimensional decision variables, as shown in Eq. (5).
f 1 x1; x2ð Þ ¼ x12 þ kx22 ð5Þ

Let k be 2, Eq. (5) is a very simple separable problem, and the global optimal solution is (x1 ¼ 0; x2 ¼ 0). But after introducing

the rotation matrix a1 a2

a3 a4

� �
into Eq. (5), which x1 0

x2 0

� �
¼ a1 a2

a3 a4

� �
� x1

x2

� �
, the problem becomes non-separable, as shown in

Eq. (6).
f 2 x1; x2ð Þ ¼ a1x1 þ a2x2ð Þ2 þ k a3x1 þ a4x2ð Þ2 ¼ ða1
2x12 þ a2

2x22 þ 2a1a2x1x2Þ þ kða3
2x12 þ a4

2x22 þ 2a3a4x1x2Þ

¼ a1
2 þ ka3

2� �
x12 þ a2

2 þ ka4
2� �
x22 þ 2ða1a2 þ ka3a4Þx1x2 ð6Þ
Assuming the rotation matrix is

ffiffi
2

p
2 �

ffiffi
2

p
2ffiffi

2
p
2

ffiffi
2

p
2

" #
, f 2 can be written in the form of Eq. (7).
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f 2 x1; x2ð Þ ¼ 3
2
x12 þ 3

2
x22 þ x1x2 ð7Þ
Fig. 6 shows the contour plots of Eqs. (5) and (7). The contour indicates an area of fixed fitness value. From Fig. 6(a), it is
evident that the function is aligned with the principle coordinate axis and the two decision variables are linearly separable.
The two components, x12andkx22 can be considered as two independent sub-problems to be solved. The algorithm can
individually perturb x1 or x2 to search the global optimum. Take an extreme example, suppose point A is on the x2 axis.
Then, by interfering independently with x1, point A can move to the global minimum at the origin point. After Eq. (5) is
appended with the rotation matrix, parameter interaction is introduced through the term x1x2. It can be found from Fig. 6
(b) that, although independently changing x1 or x2 of A’ along the direction of the principle coordinate axis can improve the
quality of A’. However, it is impossible to climb to the contour line where the fitness value is 10, and the search will be in a
dilemma. Improving all the decision variables simultaneously can the solution develop towards the global optimum
effectively.

Due to problems with parameter interactions cannot be optimized by evolving a single variable alone [41]. Therefore,
simultaneous perturbation of the non-separable variables is needed. However, it is not known whether the problem is lin-
early non-separable or which variables have interactions before optimization. Blindly perturbing all variables will reduce the
search efficiency.

In this paper, a novel membrane system based two-stage evolution strategy algorithm is proposed as AIM. In the first
stage, DMS-DES is utilized to simultaneously perturb all decision variables to optimize linearly non-separable variables
roughly. In the second stage, PCM-ES is applied to mutate a single decision variable to optimize the linearly separable deci-
sion variables.

In the first stage, DMS-DES is designed based on the dynamic membrane structure combined with the differential evo-
lution algorithm. The pseudocode of DMS-DES is shown in Algorithm 3. The allocation proportion of total evolution times
of DMS-DES is a predetermined decimal value, namely pdes. First, create four elementary membranes by the division rule,
243



Fig. 6. The contour plots of the Eqs. (5) and (7).
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namely em1, em2, em3, and em4. The DMS-DES has an elite guidance mechanism, which leads the remaining individuals to
converge guided by the current non-dominated solutions. The current non-dominated solution set is obtained by Algorithm
4, where DOMp represents the total number of symbol objects that can dominate p in the multiset. If there is no symbol
object in the multiset that can dominate p, storage p in the temporary storage set NS. Then equally distribute the symbol
objects in the P into membranes em1, em2, and em3, and send the storage set NS to em4. To enable all membranes to obtain
the elite information of the current population, call the communication rule as shown in Eq. (8) to send the non-dominated
solutions in em4 to em1, em2, and em3.

Communication rule:
½xrand1�em4 ! ½xrand1�em1

½xrand2�em4 ! ½xrand2�em2

½xrand3�em4 ! ½xrand3�em3 ð8Þ

where xrand1, xrand2, and xrand3 represent three elite non-dominated solutions randomly selected from em4 respectively. The
rand1, rand2, rand3 are the random integer values in [1, Nem4], where Nem4 denotes the number of symbol objects in mem-
brane em4. Then, the rewrite rule 1, rewrite rule 2, and rewrite rule 3 are utilized to evolve the symbol objects in elementary
membranes em1, em2, and em3, respectively. The three rewrite rules are improved based on the differential evolution (DE)
operator and have different search behaviors, as shown below.

Rewrite rule 1:
v ¼ x1best þ F1 � ðxr11 � xr12Þ

o = crossover (v;x)

Rewrite rule 2:
v ¼ xr21 þ F1 � ðxr22 � xr23Þ

o = crossover (v;x)

Rewrite rule 3:
v ¼ xþ F2 � ðxr31 � xÞ þ F1 � ðxr32 � xr33Þ

o ¼ crossoverðv;x ð9Þ

where v denotes the trial vector, F1 and F2 are the two scaling factors. x1best is the non-dominated solutions obtained from
membrane em4 by communication rule. xr11 and xr12 are the two symbol objects randomly chosen in em1 and xrand1. xr21, xr22

and xr23 indicate the three symbol objects randomly selected from em2 and xrand2. xr31, xr32 and xr33 represent the three sym-
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bol objects randomly picked from the em3 and xrand3. Then, the crossover operator is applied to mate the trial vector v and
the parent x. The SBX is used as the crossover operator here.

Rewrite rule 1 has a superduper global search ability, but the local search performance is relatively weak. Rewrite rule 2
possesses a slower global search speed, but the local search ability is more excellent. Rewrite rule 3 has rotation-invariant
property. In the early iterations, the rewrite rule 1 can promote rapid convergence. In the middle and late iterations, rewrite
rule 2 becomes preferable to generate more non-dominated solutions. The division and dissolution rules can dynamically
adjust the membrane structure and apply the three rewrite rules evenly to the whole population. The communication rule
can share the quality information from the elites to the other individuals.

Following the MFEA framework, for each generated offspring o, the skill factor is inherited from its parent and only be
evaluated on the corresponding task. If the parent is dominated by the offspring, the offspring replaces the parent. If they
are non-dominated, keep the lesser-dominated individuals. If the number of individuals dominating the two is the same,
consider the crowding degrees. The MED [1] is the crowding degree indicator used in this paper, maintaining a uniform dis-
tance among individuals. The formal representation of MED is shown in Eq. (10).
MED xið Þ ¼ TotaldisðxiÞ � NeardisðxiÞ

where
Totaldis xið Þ ¼
XN
j¼1

XM

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf im � f jmÞ

22
q

; i; j 2 f1;2; � � � ;Ng

Neardis xið Þ ¼ min
i;j–i

XM

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf im � f jmÞ

22
q

; i; j 2 f1;2; � � � ;Ng ð10Þ
where Totaldis(xi) indicates the sum of Manhattan Distance from symbol object xi to all other symbol objects in the objective
space. Nieardis(xi) calculates the Minimum Manhattan Distance between the symbol object xi and other symbol objects in
the objective space. N represents the number of symbol objects, and M is the number of objective functions. The larger of
Totaldis means the symbol object is farther away from other symbol objects. The larger Neardis signifies that the symbol
object is farther from the nearest symbol object. Therefore, the larger MED indicates that the solution can extend to the
boundary as much as possible and has better individual diversity. After all the symbol objects have evolved, call the disso-
lution rule to release all the elementary membranes and proceed to the next iteration.

Algorithm 3
The pseudocode of DMS-DES

Input: P: kth sub-multiset, k: the task index.
Output: P’: the multiset after DMS-DES.
1. While differential evolution stage stop criterion is not met do
2. Call the Division rule to create four elementary membranes, namely em1, em2, em3, and em4.
3. NS = Obtain the non-dominated solution set (P) according to Algorithm 4.
4. Distribute P equally to the elementary membranes em1, em2, em3 and send NS to em4.
5. Call the Communication rule to send the non-dominated solutions in em4 to em1, em2 and em3.
6. Each symbol object x in em1 call the o = Rewrite rule 1 (x).
7. Each symbol object x in em2 call the o = Rewrite rule 2 (x).
8. Each symbol object x in em3 call the o = Rewrite rule 3 (x).
9. For each offspring o in em1, em2, and em3
10. assign o’ skill factor as k, and evaluate o.
11. If o �x then x = o.
12. Else if o and x are non-dominated thena
13. If DOMo < DOMx then x = o.
14. Elseif DOMo = DOMx and MEDo > MEDx then x = o.
15. End if
16. End if
17. End for
18. Call the Dissolution rule to release all the elementary membranes.
19. End while
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Algorithm 4
The pseudocode of obtaining the non-dominated solution set

Input: P: the kth sub-multiset
Output: NS: the current non-dominated solution set of P.
1. NS = £.
2. For each symbol object p in P
3. DOMp = 0.
4. End for
5. For each symbol object p in P
6. For each symbol object q in P
7. If (q � p) then
8. DOMp = DOMp + 1.
9. End if
10. End for
11. If (DOMp == 0) then
12. NS = NS [ p.
13. End if
14. End for

Algorithm 5
The pseudocode of PCM-ES

Input: x: the parent symbol object, d: the index of the mutation decision variable, k: the task index, p: the mutation
precision.

Output: x: the symbol object after PCM-ES.
1. rand = random(4).
2. If i == 1 then call the o = Rewrite rule 4 (x).
3. Else if i == 2 then call the o = Rewrite rule 5 (x).
4. Else if i == 3 then call the o = Rewrite rule 6 (x).
5. Else if i == 4 then call the o = Rewrite rule 7 (x).
6. End if
7. If o is feasible then assign o’ skill factor as k, and evaluate o.
8. If o�x then x = o.
9. Else if o and x are non-dominated then
10. If DOMo < DOMx then x = o.
11. Elseif DOMo = DOMx and MEDo > MEDx then x = o.
12. End if
13. End if

In the second stage, PCM-ES [1] is used to perform a fine-grained search on each decision variable to facilitate exploration
and exploitation after the coarse-grain search of DMS-DES. The pseudocode of PCM-ES is interpreted in Algorithm 5. Rewrite
rules 4 and 5 are designed for exploitation, rewrite rules 6 and 7 are intended for exploration. The rewrite rules 4–7 detail is
illustrated in Eq. (11).

Rewrite rule 4:
o ¼ x

od ¼ xd þ Dx
Rewrite rule 5:
o ¼ x

od ¼ xd � Dx
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Rewrite rule 6:

o ¼ x

od ¼ xd � Dx

Rewrite rule 7:
1
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od ¼ xd~A � Dx

Where
Dx ¼ 1

10RandomðpcsÞ � Randomð9Þ ð11Þ
where xd and od are the d dimensions of parent and offspring, respectively, the variable pcs is the manually set integer param-
eter to control the search precision, Random (pcs) is utilized to generate random integers between [1, pcs],Randomð9Þ can
generate random integers between [1,9]. Fig. 7 shows the frequency histogram of the mutated values obtained by indepen-
dently repeating rewrite rules 4–7 20,000 times, in which the original value is set to 1. Fig. 7 (a)-(b), (e)-(f) show that rewrite
rules 4–5 focus on exploitation. As shown in Fig. 7 (a)-(b), when pcs is set as 2, the value will be mutated in steps of 0.1 and
0.01 in the vicinity of 1. In Fig. 7 (e)-(f), when pcs takes to 5, the value does local searches near 1 in steps of 1E-1, 1E-2, 1E-3,
1E-4, and 1E-5. In contrast, Fig. 7(c)-(d), (g)-(h) point that rewrite rules 6–7 are adept at exploration. As shown in Fig. 7(c)-
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Fig. 7. The frequency histogram of the mutated values generated by rewrite rules 4–7.
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(d), when pcs is set as 2, the value can magnify or shrink 1 by a factor of 10 or 100. In Fig. 7(g)-(h), when pcs takes to 5, the
value can enlarge or shrink 1 by 10, 1E2, 1E3, 1E4, or even 1E5 times. Hence, the value can jump out of the local optimum.

To clearly show the advantages of the proposed two-stage algorithm in solving the non-separable problems, Fig. 8(a)-(d)
demonstrate the performance of the proposed EMT-MOMIEA and famous NSGA-II on the sub-problems CIMS1 and PILS2 in
the classical MOMTO test suite. CIMS1 and PILS2 are both non-separable problems. For a fair comparison, EMT-MOMIEA runs
without using the information transfer mechanism. The population size is 100, and each individual is evolved in 5000 gen-
erations. In the proposed EMT-MOMIEA, the first 1250 generations use the DMS-DES strategy, and the PCM-ES strategy is
utilized later. Fig. 8(a) shows that DMS-DES suffices to converge quickly and make the multiset rapidly reach a point on
the PF in 1250 generations when solving the CIMS1 problem. Fig. 8(b) confirms that PCM-ES can perform a refined search
after DMS-DES so that that multiset can extend to the entire PF when solving the CIMS1 problem. In Fig. 8(c), the DMS-
DES can roughly trace to an approximate PF in solving the PILS2 problem. As shown in Fig. 8(d), the obtained PF can contin-
uously advance to the true PF through PCM-ES’s refined search for every variable.

3.3. The information transfer based on IMCV

Recently, many studies have made efforts to avoid the negative transfer [24–34]. However, these methods ignore the
characteristics of decision variables [42]. The diversity-related variable emphasizes dispersion, but the convergence-
variable is working on converging to the global optimum.When the communication decision variables have conflicting char-
acteristics, the opposite evolution direction leads to negative transfer. Inspired by the phenomenon of the binding of infor-
mation molecules and receptors during information transfer between cells, the IMCV concept is proposed to control the
information transfer probability on a single variable to reduce negative transfer.

The following explains the occurrence of negative transfer in MOMTO from the perspective of decision vectors. Assume
that the advanced CIMS1 and CIMS2 functions [43] are optimized simultaneously, as shown in Eqs. (12), (13). Parameter n
represents the number of dimensions of decision variables set as 6 and sv is the shift vector set as [1, 1, �1, �1, �1]. Then, the
PS of CIMS1 and CIMS2 are x1 2 0;1½ �; xi ¼ 1; i ¼ 2 : 6 and x1 2 0;1½ �; x2 ¼ 1; x3 ¼ 1; xi ¼ �1; i ¼ 3 : 6, respectively. From Fig. 9(-
a)-(b), it can be seen that the first dimension decision variable of CIMS1 and CIMS2 are both diversity-related variables, and
each individual in the population has different values in this dimension, so that the population can be distributed on the PF
uniformly. The 2–6 dimension decision variables are all convergence-related variables. Each individual in the population has
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Fig. 8. The performance of two-stage evolution strategy on the CIMS1 and PILS2 problems.
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Fig. 9. The PS and PF of CIMS1 and CIMS2.
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the same value in this dimension so that the population can be close to the true PF. Fig. 9(c)-(d) show the true PF of CIMS1-2.
If the first dimension of the two individuals exchanges information, the diversity of the two can be improved. If the second
and third dimensions of the two transfer information correspondingly, it will improve the convergence of the two tasks.
However, if the diversity-related variable such as the first dimension of CIMS1 and the convergence-related variable such
as the second dimension of CIMS2 exchange information, it will destroy CIMS10s diversity and CIMS20s convergence and
result in a negative transfer. Moreover, suppose two task’s convergence-related variables’ global optimums are far apart.
In that case, the traditional information transfer method may destroy the convergence of two tasks and result in a negative
transfer.
minf 1 xð Þ ¼ x1;

minf 2 xð Þ ¼ q xð Þ 1� x1
q xð Þ


 �2
� 


;

q xð Þ ¼ 1þ Pn�1

i¼2
100 x2i � xiþ1

� �2 þ 1� xið Þ2

 �

;
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In cytology, the information transmission between cells through body fluids requires the participation of information
molecules. The concentration of information molecules is positively related to the sensitivity of information transmission
between cells that is the higher the concentration, the more sensitive the information transmission between cells. Therefore,
the sensitivity of information transmission between cells can be affected by adjusting the concentration of information
molecules. Inspired by this phenomenon, the IMCV concept is proposed that only when the probability of the decision vari-
able meets the threshold of IMCV in this dimension can information be transferred between tasks. The IMCV is designed as a
threshold that is positively correlated to and adaptively adjusted by the success rate of information transfer. The proposed
EMT-MOMIEA applies the crossover operator SBX as the information transfer method. The pseudocode of crossover with
communication rule based on IMCV is given in Algorithm 6. First, a random decimal value rand is generated between (0,

1) in line 1. If rand is less than the value of IMCV on the d dimension imcv
���!

d, the transfer crossover strategy is invoked.
The uppermost difference between the transfer crossover method and the conventional crossover method is the source of

the other parent. Next, set the flag Istransfer as True, and add the statistical variable ngt
�!

d by one. In the transfer crossover
strategy, the communication rule ½t�jthsub�multiset ! ½t�kthsub�multiset is called to transfer t from the source task j to the target task
k in line 6. The crossover operator is performed at d the dimension between parents x and t, the result will assign to the

offspring o in line 7. However, if rand is larger than imcv
���!

d, the transfer crossover strategy is abandoned. The flag Istransfer

is set as False, and the ngt
�!

d is added by one. The following process is the same as the transfer crossover method, but the dif-
ference lies in selecting the other parent ns. In the conventional transfer strategy, ns comes from the current non-dominated
solutions of the target task.

Algorithm 6
The pseudocode of crossover with communication rule based on IMCV

Input: x: the parent symbol object, NS: the current non-dominated solutions set, d: the index of the decision variable, j:

the index of the source task, imcv
���!

: the information molecule concentration vector, ngc��!: number of offspring

generated by conventional crossover, ngt
�!

: number of offspring generated by transfer crossover.
Output: o: offspring symbol object, Istransfer: the flag used to indicate the crossover method.
1. rand = random (0, 1)

2. If rand < imcv
���!

d then
3. Istransfer = True.

4. ngt
�!

d = ngt
�!

d + 1.
5. o = x.
6. t = Communication rule (jth sub-multiset).
7. od = crossover (xd, td).
8. o.skill factor = x.skill factor.
9. Else
10. Istransfer = False.
11. ngc��!

d = ngc��!
d + 1.

12. o = x.
13. ns = random (NS).
14. od = crossover (xd, nsd).
15. o.skill factor = x.skill factor.
16. End if

Algorithm 7

The pseudocode of update the influence factor of IMCV

Input: x: the parent symbol object, o: the offspring symbol object, d: the index of the decision variable, nst
�!

: the number
of offspring generated by transfer crossover surpass parents, nsc�!: the number of offspring generated by conventional
crossover surpass parents.

Output: the updated nst
�!

and nsc�!.
1. If o � x then

2. If (Istransfer == True) then nst
�!

d = nst
�!

d+1.
3. Else nsc�!

d = nsc�!
d+1.

4. End if
5. Else if o and x are non-dominated then
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6. If DOMo < DOMx then

7. If (Istransfer == True) then nst
�!

d = nst
�!

d+1.
8. Else nsc�!

d = nsc�!
d+1.

9. End if
10. Elseif DOMo = DOMx and MEDo > MEDx then

11. If (Istransfer == True) then nst
�!

d = nst
�!

d+1.
12. Else nsc�!

d = nsc�!
d+1.

13. End if
14. End if
15. End if

As mentioned in Algorithm 1, after traversing all symbol objects in the kth task, IMCV needs to be updated. The IMCV is

calculated by the statistical variables nst
�!

and nsc�! which indicate the number of offspring generated by transfer crossover

and conventional crossover in a generation, respectively. The calculation method of nst
�!

and nsc�! are expressed as Algorithm
7. The rules that offsprings can replace their parents are the same as those in DMS-DES and PCM-ES, mentioned above. The
identifier Istransfer indicates offspring’s generation strategy, d represents the mutation position of the decision variable. If

the superior offspring is generated by the transfer strategy, nst
�!

d is added by 1. On the contrary, if it is generated by the con-
ventional crossover, nsc�!

d is added by 1.

Algorithm 8
The pseudocode of update the IMCV

Input: nst
�!

: the number of offspring generated by transfer crossover surpass parents, nsc�!: the number of offspring
generated by conventional crossover surpass parents. ngc��!: the total number of offspring generated by conventional

crossover, ngt
�!

: the total number of offspring generated by transfer crossover, imcv
���!

: the information molecule
concentration vector.

Output: the updated imcv
���!

.
1. For d = 1 to DimMin

2. src = nsc�!
d/ngc
��!

d.

3. srt = nst
�!

d/ngt
�!

d.

4. If ngt
�!

d == 0 then

5. imcv
���!

d = imcv
���!

d + src, imcv
���!

d = min (imcv
���!

d, 0.5).
6. Else if srt > src then

7. imcv
���!

d = imcv
���!

d + srt, imcv
���!

d = min (imcv
���!

d, 0.5).
8. Else

9. imcv
���!

d = imcv
���!

d – srt, imcv
���!

d = max (imcv
���!

d, 0).
10. End if
11. End if

12. imcv
���!

d = min (max (imcv
���!

d, 0), 1).
13. End for

The update method of the IMCV vector is shown in Algorithm 8. The purpose is to dynamically adjust the intensity of infor-
mation transfer on each decision variable to avoid the negative transfer. The adjustment of IMCV is based on the reward and
punishment mechanism of src and srt which represent the proportion of offspring that can surpass the parent generated by
the conventional crossover method and the information transfer method, respectively. Considering a single decision variable,

if srt is greater than src, the information transfer strategy is superior at this generation, so imcv
���!

d is better to increase in line 7.

Conversely, if srt is less than src, the conventional evolution way is more suitable for the current population, so imcv
���!

d is bet-
ter to reduce in line 9. However, even if the success rate of the transfer crossover is meager, there should reserve some oppor-
tunities for the information transfer. If there are no individuals generated by the information transfer in a generation,

increase imcv
���!

d to the src in line 5. If imcv
���!

d is too large that information transfer occupies all evolutionary resources,

imcv
���!

d is restricted to 1 in line 12.
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Table 1
The parameters for the experiments.

Parameter NSGA-II MOMFEA MOMFEA-II MFEA-GHS MFEA-SADE EMT-MOMIEA

Random mating probability rmp – 0.3 – 0.3 0.3 –
Initial value of IMCV of each dimension 0.5
Population size for all the tasks in the classical and

complex MOMTO test suites
200 200 200 200 200 200

Population size for all the tasks in the MOMaTO test
suite

– 500 – – – 500

Maximum evaluation times for all the tasks in the
classical and complex MOMTO test suite

200,000 200,000 200,000 200,000 200,000 200,000

Maximum evaluation times for all the tasks in the
MOMaTO test suite

– 500,000 – – – 500,000

Crossover probability pc 0.9 0.9 0.9 0.9 – 0.9
Distribution index of crossover gc 20 20 20 20 – 20
Mutation probability pm 1/D 1/D 1/D 1/D – –
Distribution index of mutation gm 20 20 20 20 – –
Scaling factor F1 in DE – – – – 0.6 0.6
Scaling factor F2 in DE – – – – 0.5 0.5
Experience period e in MFEA-SADE – – – – 60 –
Allocation proportion of evolution times in DMS-

DES in classical MOMTO test suite pdes

1/4

Allocation proportion of evolution times in DMS-
DES in complex MOMTO and MOMaTO test
suites pdes

1/8

Mutation precision pcs in PCM-ES 3
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4. Experiment

In our experimental study, the performance of the proposed EMT-MOMIEA is compared with four advanced multi-
objective EMT algorithms MOMFEA-II [25], MFEA-SADE [29], MOMFEA [32], MFEA-GHS [33], and the famous single-task
MOEA NSGA-II [2]. The performance of EMT-MOMIEA is estimated on the classical and complex MOMTO test suites
[43,44], and the MOMaTO benchmark test suite [44].
4.1. Test suites introduction

In EMT theory, the decisive factors affecting information transfer efficiency are the intersection degree of the optimal
solutions and the similarity of fitness landscapes [43]. If the optimal solutions of the source and the transfer tasks are
approximate, the evolution of the population can bring dividends to all these tasks. If the fitness landscapes of the tasks
are similar, the information transfer can promote the convergence. Hence, the classical MOMTO test suite [43] is designed
into the complete intersection (CI), partial intersection (PI), and no intersection (NI), three categories based on the intersec-
tion degree of the global optimums. Based on the similarity degree of the fitness landscape, the classical MOMTO test suite
can be classified as high similarity (HS), medium similarity (MS), and low similarity (LS). Combining the above two classi-
fication standards, the classical MOMTO test suite includes nine continuous multi-objective sub-problems from CIHS to NILS.
To study the performance of the EMT algorithms on the problems with complex PS [45], the proposed algorithm is also com-
pared with other algorithms on the complex MOMTO test suite named CPLX [44]. Moreover, the MOMaTO benchmark test
suite [44], which optimizes 50 different tasks simultaneously, is proposed to estimate algorithms’ performance in processing
many tasks.
4.2. Compared algorithms

The proposed EMT-MOMIEA is compared with four advanced multi-objective EMT algorithms MOMFEA-II [25], MFEA-
SADE [29], MOMFEA [32], MFEA-GHS [33], and the famous single-task MOEA NSGA-II [2]. MOMFEA [32] is the first multi-
objective EMT algorithm with a landmark significance. It introduces the well-known MOEA NSGA-II as the evolutionary
operator within the classic MFEA framework. It can reflect the pros and cons of EMT by comparing the performance of
NSGA-II and MOMFEA. MOMFEA-II [25] introduces an online learning method into MOMFEA to adaptively adjust the infor-
mation transfer intensity. The MFEA-SADE [29] introduces the subspace alignment and adaptive differential evolutionary to
MOMFEA. The MFEA-GHS [33] presents the genetic transform and hyper-rectangle search into MOMFEA. All the algorithms
are implemented utilizing the Jmetal 4.5.2, a famous object-oriented Java-based framework [47] to avoid the differences
brought by the implementation platform of algorithms [48]. The platform on which the algorithm runs is a PC with Intel Core
i5-9400F CPU 2.90 GHz, and 16.00 GB of RAM.
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4.3. Performance indicator

The inverted generational distance (IGD) [46], which can simultaneously evaluate the convergence and diversity of the
obtained population, is used as the performance indicator in this paper. IGD is the average value of the minimum distance
from the sampling points on the true PF to the obtained PF. The smaller the IGD value is, the better the convergence and
diversity of the population are. The mathematical form of the IGD is shown in Eq. (14). NPF represents the number of the
sampling points in the true PF, and Disti indicates the Euclidean Distance from the ith point on the true PF to the closest point
in the obtained population.
IGD ¼
PNPF

i¼1Dist
2
i


 �1=2

NPF
ð14Þ
4.4. Parameter settings

For a fair comparison, the population size for a single-task MOEA NSGA-II is set as 100 in the classical and complex
MOMTO test suites. The population size of multi-objective EMT algorithms MOMFEA [32], MOMFEA-II [25], MFEA-GHS
[33], MFEA-SADE [29], and EMT-MOMIEA are all set as 200. As for the MOMaTO benchmark test suite, which optimizes
50 tasks simultaneously, the population size is set to 500. The parameter settings of the comparison algorithms are consis-
tent with the original paper. For the proposed EMT-MOMIEA, the values of scaling factors F1 and F2 are the same as MFEA-
SADE. The allocation proportion of evolution times in DMS-DES in classical MOMTO, complex MOMTO, and MOMaTO test
suites are set as 1/4, 1/8, and 1/8, respectively, the mutation precision pcs in PCM-ES is set as 3. The details of all the param-
eter settings are summarized in Table 1.

It is worth noting that all comparison algorithms run independently 20 times on all test suites. In all the experimental
results tables such as Tables 2–5, the mean of IGD values is exhibited. The best result among the algorithms on each sub-
problem is highlighted in gray. The Wilcoxon rank-sum test at the 95% confidence level is utilized for the experimental
results, the remarkable better, remarkable worse, and not equivalent employing ‘‘+”, ‘‘�” and ‘‘=” to express respectively.

4.5. Performance on classical MOMTO test suite

The comparative experiments on the classical MOMTO test suite are revealed in Table 2. On most test problems, the
multi-objective EMT algorithms perform better than classic MOEA NSGA-II. This proves that the information transfer mech-
anism in EMT algorithms is indeed effective. In comparison with the advanced multi-objective EMT algorithms MOMFEA,
MOMFEA-II, MFEA-GHS, and MFEA-SADE, the proposed EMT-MOMIEA obtains 15, 14, 16, and 17 superior results out of
18 sub-problems, respectively.

The proposed EMT-MOMIEA can get the best results on the high similarity problems as CIHS, PIHS, and NIHS. This is
because the proposed IMCV-based information transfer strategy can adjust the information transfer intensity adaptively.
When solving the high similarity problems, the success rate of information transfer will increase, which will lead to an
increase in IMCV and promote the information transfer between the two tasks. It can accelerate the convergence of the
two tasks. For problems with no intersection, such as NIHS, NIMS1, and NILS2, among these problems, the global optimum
of simultaneously optimized tasks do not intersect and are more difficult to solve simultaneously. The proposed EMT-
MOMIEA also accomplishes the best results on these sub-problems. This is because the IMCV theory changes the information
transfer intensity from the decision variable level so that EMT-MOMIEA can adapt to the simultaneous optimization of two
utterly different tasks. When the two tasks are not similar, or the global optimum do not overlap, the concentration of infor-
mation molecules will decrease, which will reduce the sensitivity of information transmission between the membranes. Inci-
dentally, the IMCV curves on the classical MOMTO test problems are shown in Fig. 10.

4.6. Performance on complex MOMTO test suite

The comparative experiments on the complex MOMTO test problems are revealed in Table 3. The advanced EMT algo-
rithms can achieve better results than NSGA-II on most sub-problems, mainly because the EMT algorithm can bring more
bias to the target task’s decision space through information transfer. In comparison with the state-of-the-art multi-
objective EMT algorithms MOMFEA, MOMFEA-II, MFEA-GHS, and MFEA-SADE, the proposed EMT-MOMIEA obtains 16, 15,
18, and 15 superior results out of 20 sub-problems, respectively.

Solving the MOMTO problems with complex PS requires an algorithm having more robust search capability. The advan-
tages of the proposed EMT-MOMIEA mainly come from the proposed two-stage evolution strategy algorithm based on the
membrane system. In the first stage, the DMS-DES is applied as AIM. Firstly, the DMS-DES can endow the population with
more evolutionary biases to improve the search performance and balance exploration and exploitation by embedding three
different DE rewrite operators. Secondly, the DMS-DES gives full play to the advantages of the dynamic membrane structure,
which employs unique division rule and dissolution rule to adjust membrane structure in the evolutionary process dynam-
ically. The division rule can divide the membrane into four sub-membranes. The dissolution rule can dissolve the membrane
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Table 2
Mean values of the IGD obtained by six algorithms on the classical MOMTO test problems.
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Table 3
Mean values of the IGD obtained by six algorithms on the complex MOMTO test problems.
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Table 4
Mean values of the IGD obtained by MOMFEA and EMT-MOMIEA on the MOMaTO test problems.
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structure to disperse all the objects in the membrane to the outer membrane to redistribute the object resources. Thirdly, the
DMS-DES makes full use of the communication rule in membrane calculation. By continuously sending the non-dominated
solutions in the current population to other sub-membranes, it can effectively promote the convergence of the population. In
the second stage, the rewrite rules in the PCM-ES have asynchronous lengths and search modes, which can mutate a single
variable with different precisions. The IMCV curves on the complex MOMTO test problems are shown in Fig. 11.
4.7. Performance on MOMaTO test suite

The comparative experiments on the MOMaTO benchmark test suite are revealed in Table 4. There are six sub-problems
in the MOMaTO benchmark test suite, namely MATP1-MATP6. In each sub-problem, there are 50 two-objective tasks opti-
mized simultaneously. As shown in Table 4, the EMT-MOMIEA shows apparent advantages in all the tasks in the MOMaTO
benchmark test suite. EMT-MOMIEA does not use a specific source task selection method but randomly selects a source task
from 50 tasks. The advantages of the proposed EMT-MOMIEA can be summarized into three main points. Firstly, the pro-
posed IMCV-based information transfer strategy can effectively reduce the negative transfer. Secondly, the proposed two-
stage evolution strategy based on membrane structure can apply a variety of evolutionary operators to introduce multitudi-
nous search modes, expand the search range and improve the search efficiency. Finally, all the tasks are optimized using the
same total population in the MOMaTO benchmark test suite, so the search resources allocated to each task become sparse.
The PCM-ES has been proven to have strong search ability even with tiny population size, approach the true PF, and extend to
the whole PF [1]. The proposed EMT-MOMIEA applies the PCM-ES as AIM to a detailed search on a single decision variable.
Therefore, EMT-MOMIEA can achieve impressive performance even with tiny population size.
4.8. Discussion on the proposed strategies

This section discusses the contribution of each proposed strategy to the performance of the proposed EMT-MOMIEA.
Table 5 shows the results of the basic method with different proposed operators on the classical MOMTO test suite. The
EMT-DMS only uses the DMS-DE as AIM, EMT-PCM only applies PCM-ES as AIM, EMT-TS employs the integrated membrane
system-based two-stage evolution strategy as AIM. The above three algorithms do not use the IMCV-based information
transfer strategy, and the rmp of the above three algorithms are all set as a fixed value of 0.3. The EMT-MOMIEA is the com-
plete proposed algorithm. Comparing the performance of EMT-DMS and EMT-PCM, EMT-DMS only dominates on CIMS2.
This is because the decision variables in CIMS2 problem have parameter interactions, while the DE operator in EMT-DMS
has parameter invariance and can solve non-separable problems. However, applying the EMT-DMS as AIM solely also has
the following disadvantages. First, changing multiple decision variables simultaneously can lead the population to converge
quickly, but it will also lose some diversity. Second, EMT-DMS changes all variables concurrently. It is difficult to determine
Table 5
Mean values of the IGD obtained by four algorithms on the classical MOMTO test problems.
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Fig. 10. The values of IMCV in the classical MOMTO test problems.
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the position of non-separable variables and mutate a single decision variable to perform a fine-grained search. Therefore,
EMT-DMS can quickly converge to the approximate PF, but it is hard to continue to be better and likely to mature prema-
turely. Comparing EMT-PCM and EMT-TS, EMT-PCM is only better on PIMS and NIMS2. Although PCM-ES can carry out a
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Fig. 11. The values of IMCV in the complex MOMTO test problems.
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subtle variation of unsynchronized length on a single variable, PCM-ES is poor at solving the non-separability problem. EMT-
TS takes advantage of two evolutionary operators. It can quickly guide the population to an approximate PF or a point on the
PF in the early iterations and then use PCM-ES to fine-tune a single decision variable, which can fully play MIEA’s strength
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Fig. 12. The IGD curves by EMT-DMS, EMT-PCM, EMT-TS, EMT-MOMIEA on the classical MOMTO test problems.

Z. Xu, K. Zhang, J. He et al. Information Sciences 596 (2022) 236–263

260



Z. Xu, K. Zhang, J. He et al. Information Sciences 596 (2022) 236–263
and potential. Comparing EMT-TS and EMT-MOMIEA, EMT-TS performs worse than EMT-MOMIEA in all sub-problems. This
is because EMT-MOMIEA utilizes the proposed IMCV based adaptive information transfer strategy, which can dynamically
change the information transfer probability, thus reducing the occurrence of negative transfer.

Fig. 12 shows the mean IGD curves by EMT-DMS, EMT-PCM, EMT-TS, EMT-MOMIEA after 20 independent runs on the
classical MOMTO test problems. Comparing EMT-DMS and EMT-PCM, it can be found that in most sub-problems, EMT-
DMS can evolve faster in about the first 100 generations, thanks to the fast convergence of the DE operator based on the
dynamic membrane structure. However, after about 100 generations, the IGD of EMT-PCM tends to continue to decline,
while EMT-DMS tends to converge. This is because EMT-DMS modifies all decision variables each time, and it isn’t easy
to generate a better individual than the parent in this way. Comparing EMT-DMS, EMT-TS, and EMT-MOMIEA, it can be seen
that these three algorithms have the same iterative trend in about the first 250 generations because they all use the EMT-
DMS evolutionary operator. After about 250 generations, EMT-TS and EMT-MOMIEA can give full play to the advantages of
the PCM-ES operator, which can independently mutate a single decision variable to make the population continue to
improve. Comparing EMT-TS and EMT-MOMIEA, although the performance of the two algorithms is not much different at
the beginning of the iteration, as the iteration progresses, the advantages of EMT-MOMIEA gradually become prominent.
The adaptive transfer strength strategy based on IMCV can effectively reduce negative transfer.

5. Conclusion

In this paper, a novel membrane-inspired evolutionary framework with a hybrid dynamic membrane structure is pro-
posed to solve the MOMTO problems. The overall algorithm is contained in a skin membrane, and each task is involved
in a separate sub-membrane. The rewrite rules in the membrane system are introduced to evolve symbol objects to con-
verge. The communication rules are adopted to communicate between the membranes that solve different tasks to exchange
and reuse the information between tasks. A novel two-stage evolution strategy algorithm based on the membrane system is
proposed as AIM to improve the convergence and diversity. In the first stage, a novel differential evolution strategy based on
dynamic membrane structure is proposed to promote multiset to converge quickly. In the second stage, the precision con-
trollable mutation-based evolution strategy is adopted to promote the further convergence of the multiset while improving
the diversity of the population. The information molecule concentration vector inspired by the binding process of informa-
tion molecules and receptors during information exchange between cells is designed for adjusting transfer intensity to avert
the negative information transfer. The performance is compared against four state-of-the-art multi-objective EMT algo-
rithms and NSGA-II on classical MOMTO, complex MOMTO, and MOMaTO test suite. The experiment results clearly show
that the proposed EMT-MOMIEA provides a competitive edge over the state-of-the-art EMT algorithms.

In the future, we will conduct further research in the following aspects. First, the proposed EMT-MOMIEA is designed
based on the cell-like membrane structure. In the future, MIEAs based on tissue-like membrane structures can be considered
to study the performance difference of different membrane structures in solving the MOMTO problems. Then, the proposed
EMT-MOMIEA can also be used to solve large-scale MTO, dynamic MTO problems, and other complex optimization problems
in the real world.
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