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H I G H L I G H T S  

• A decision variables classification method based on control variable analysis is proposed. 
• An evolutionary recombination strategy based on decision variables’ characteristics is proposed. 
• The proposed algorithm hybridizes the immune algorithm and evolutionary gradient search as the global and local search operators separately. 
• The proposed algorithm can achieve better performance than the state-of-the-art evolutionary multitasking multi-objective evolutionary algorithms.  
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A B S T R A C T   

Multi-task multi-objective optimization problems need to consider the algorithm’s convergence and the pop
ulation’s diversity. The information transfer of decision variables with different characteristics may harm the 
effect of knowledge reuse. This paper proposes a novel hybrid multi-objective multifactorial memetic algorithm 
to address this issue. The proposed variable classification method will classify decision variables into 
convergence-related and diversity-related decision variables. Only the same type of decision variables in the 
source and target tasks can transfer information to avoid negative transfer. Different evolutionary operators are 
adopted according to the characteristics of decision variables during individual recombination. In addition, the 
proposed algorithm hybridizes the immune algorithm as the global evolutionary operator and the evolutionary 
gradient search algorithm as the local search operator into the multifactorial framework to enhance the searching 
ability. Finally, the proposed algorithm is compared with the state-of-the-art multi-objective evolutionary 
multitasking algorithms. The results of the experiments show that the proposed algorithm can achieve promising 
performance on the classical and complex multi-task multi-objective benchmark test suites.   

1. Introduction 

Multi-objective optimization problems (MOPs) require optimizing 
multiple always conflicting objectives simultaneously, which are ubiq
uitous in the real world [1–5]. Without loss of generality, assuming that 
the problem is a minimization problem, it can be defined as: 

Min
x∈Ω

(F(x) = (f1(x), f2(x), f3(x),…, fM(x))) (1)  

where x=(x1, …, xD) denotes a decision vector with D dimension in the 
decision space Ω. F(x) = (f1(x), f2(x), f3(x),…, fM(x)) represents the 
objective function vector containing the M conflicting objectives 

functions. Due to the objective functions conflict with each other, 
optimizing one objective function will inevitably lead to the deteriora
tion of another objective function. It is impossible to identify one single 
solution optimal for all objective functions. Therefore, Pareto domi
nance is proposed to determine a set of best tradeoff solutions. Given two 
decision vector x and y, if ∀i ∈ {1,2, 3…,M} fi(x) ≤ fi(y) and ∃j ∈
{1,2,3…M} fj(x) < fj(y), x is said to Pareto dominate y referred to as 
x≺ y. If there is no other solution in Ω that can dominate x*, then x* is 
called a Pareto optimal solution. All Pareto optimal solutions constitute 
the Pareto optimal solution set (PS). The objective vectors projected 
from the PS in the objective space are called the Pareto front (PF). 

Multi-objective evolutionary algorithms (MOEAs) have been widely 
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used to solve MOPs because they can obtain multiple Pareto optimal 
solutions in a single run. The traditional MOEAs can be mainly classified 
into three categories, dominant relationship-based algorithms [6–8], 
performance indicator-based algorithms [9–11], and 
decomposition-based algorithms [12–14]. The dominance 
relationship-based algorithms mainly utilize the dominance relationship 
as the basis for screening solutions. Improving the traditional domi
nance relationship is the main thought for these algorithms to increase 
convergence pressure. The performance indicator-based algorithms 
usually apply the artificially designed indicator to evaluate the 
convergence and diversity of the current population to guide it toward 
the PS. The decomposition-based algorithms generally decompose a 
complex multi-objective problem into several single-objective problems 
(SOPs) or multiple simpler MOPs. This type of algorithm purports to 
simplify the problem, dividing and conquering. All the conventional 
MOEAs can usually perform decently in traditional MOPs but are 
designed only to solve one MOP in a single run. When faced with a new 
problem, the population needs to be reinitialized. However, many MOPs 
in the real world are interrelated. The knowledge to solve one MOP is 
beneficial to solve a similar one. 

Inspired by the human brains that can parallelly process multiple 
tasks and flexibly wield the knowledge learned from different tasks, 
evolutionary multitasking (EMT) is proposed to optimize multiple 
problems simultaneously [15]. The primary purpose of EMT is to 
improve the optimization efficiency by transferring and reusing the 
knowledge learned in optimizing multiple tasks processes. The EMT is 
very innovative and forward-looking. Once put forward, it has aroused 
continuous interest and has been successfully applied to solve various 
real-world optimization problems [16–19]. In the EMT area, one prob
lem that needs to be solved is called a task. The problem that optimizes 
multiple tasks synchronously is referred to as multi-task problem 
(MTOP). 

When there are MOPs in the simultaneous optimization tasks, it is 
called a multi-task multi-objective optimization (MOMTO) problem. 
Unlike single-objective multitasking, multi-objective multitasking aims 
to find a set of nondominated tradeoff solutions for each MOP rather 
than a single optimal point. Therefore, the multi-objective EMT algo
rithms must consider not only the convergence but also the diversity of 
the population. The non-dominated solutions should be dispersed as 
much as possible in the search process. In MOPs, different decision 
variables have otherness characteristics, some decision variables are 
more related to diversity, and some decision variables are more related 
to convergence. The diversity-related decision variables promote solu
tions to evenly dispersed and the convergence-related decision variables 
boost the population toward the PF. During knowledge transfer, decision 
variables will also transfer their characteristics to the target task. When 
decision variables with different characteristics carry out knowledge 
transfer, it often adversely affects the population. 

Existing multi-objective EMT algorithms often neglect this issue, and 
no research has made a breakthrough. To address this issue, this paper 
proposes a novel hybrid multi-objective multifactorial memetic algo
rithm (HMOMFMA). The decision variable classification method is 
applied to classify the decision variables into convergence-related de
cision variables and diversity-related decision variables according to 
their contribution to the convergence and diversity of the population. 
Specifically, only decision variables of the same category can proceed 
with knowledge transfer in the knowledge transfer stage. In the indi
vidual recombination stage, decision variables of different categories 
will be recombined using different evolutionary operators. HMOMFMA 
hybridizes the immune algorithm and evolutionary gradient search 
(EGS) into the EMT framework to enhance the search ability. The im
mune algorithm is utilized as the global optimization operator, which 
has a powerful convergence capacity by focusing on the non-dominated 
solutions in each iteration and can maintain the population diversity by 
favoring the sparse solutions selected by the maximum extension dis
tance. The EGS is introduced as the local search operator, which has 

adaptive mutation length and can guide individual evolution based on 
gradient information. To verify the efficacy of HMOMFMA, compre
hensive empirical studies are conducted on the classical MOMTO and 
complex MOMTO benchmark problems. The experimental results 
demonstrate that the proposed HMOMFMA is superior to the state-of- 
the-art multi-objective EMT algorithms. 

The main contribution of this paper are summarized as follow. 
1) A decision variables classification method based on control vari

able analysis is proposed to divide decision variables into two categories 
according to their contribution to the diversity and convergence of the 
population. 

2) An evolutionary recombination strategy based on decision vari
ables’ characteristics is proposed. First, according to their characteris
tics, two different evolutionary operators are applied to the decision 
variables in the recombination process. Second, knowledge transfer 
occurs only between decision variables with the same characteristics. 

3) The proposed HMOMFMA hybridizes the immune algorithm and 
EGS as the global and local search operators separately. The immune 
algorithm focuses on the sparsest area in the non-dominated solution set 
that can well maintain population diversity. The EGS performs a local 
search around the non-dominated solutions and can accelerate conver
gence by adaptively adjusting the mutation length and guiding the 
evolution according to the gradient information. 

4) To assess the performance of the proposed HMOMFMA, experi
ments are conducted on the classical and complex benchmark test suites. 
The proposed HMOMFMA is compared with five state-of-the-art multi- 
objective EMT algorithms, MOMFEA [35], MOMFEA-II [26], EMT-A 
[32], MFEA-SADE [36], and MFEA-GHS [37] and a classic MOEA, 
namely NSGA-II [6]. The experimental results demonstrate that the 
proposed HMOMFMA is superior to other advanced EMT algorithms. 

The rest of this paper is organized as follows. Section 2 reviews the 
related work of the proposed algorithm. Section 3 describes the details of 
the proposed HMOMFMA. Section 4 presents the comprehensive ex
periments to assess the effectiveness of HMOMFMA. Finally, Section 5 
concludes this paper and prospects some future directions. 

2. Related work 

2.1. Multifactorial algorithm framework 

Unlike SOPs and MOPs, MTOPs can be regarded as the third type of 
optimization problem paradigm: to optimize multiple problems simul
taneously and find the optimal solution corresponding to each problem. 
In MTOPs, each independent problem is called a task, which can be an 
SOP or a MOP. Assuming that K minimization tasks are optimized 
simultaneously, multi-task optimization can be defined as Eq. (1). 
{

x∗
1,x

∗
2,…, x∗

K

}
= {argminT1(x1), argminT2(x2),…, argminTK(xK) } (2)  

Where Tj(j = 1,2,…K) denotes the jth optimization task, xj represents 
the feasible solutions assigned to the jth task, x∗

j indicates the optimal 
solution of the jth task. 

Illuminated by the memetic computing and the multifactorial in
heritance [38], Gupta et al. [15] proposed the fundamental EMT algo
rithm framework based on the memetic principle, namely the 
multifactorial evolutionary algorithm (MFEA), where each task 
Tjϵ{1,2,…K} is considered as a memetic factor that influences the indi
vidual evolution in the K-factorial environment. To achieve efficient 
cross-domain exchange of genetic material between tasks, MFEA pro
posed the unified decision space strategy, which encodes each in
dividual’s decision variables into a unified space with an equal number 
of dimensions and uniform upper and lower boundaries to solve the 
isomerous decision space problem which each task has the diverse 
number of dimensions and each dimension has different boundaries. 
Specifically, during population initialization, each individual will be 

Z. Xu et al.                                                                                                                                                                                                                                       



Applied Soft Computing 152 (2024) 111232

3

encoded into the unified decision space with D dimensions, where D 
= max {Djϵ{1,2,…K}} is the largest number of dimensions of all the tasks, 
and each dimension is scaled to between [0,1]. By encoding into the 
unified decision space, one individual can be regarded as a combination 
of K chromosomes for different tasks. When solving a specific problem, 
the individual will be decoded into the corresponding target task space. 
Suppose ẍi denotes the ith individual in the unified decision space, and xi 
represents the result of ẍi after decoding into the target task space. The 
decoding process is shown in Eq. (2). 

xi = ẍi
(
1 : Dj

)
⊙
(
Uj − Lj

)
+Lj (3)  

Where ẍi
(
1 : Dj

)
represents the first Dj dimensions of the ith individual in 

the unified decision space, and Dj is the number of dimensions of the jth 
task. Uj and Lj express the upper and lower bounds of the decision 
variables of the jth task, respectively. ⊙ denotes the Hadamard product. 

To evaluate the individuals and compare the performance of in
dividuals in different tasks, for each individual pi∈{1,2,…,|P| } in the pop
ulation P, has the following definitions. 

Definition 1. (Factorial cost): The factorial cost ψ i
j is designed to 

measure the performance of individual pi on the task Tj. When pi is a 
feasible solution that satisfies the constraints of Tj, ψ i

j is the value of the 
objective function of Tj. Otherwise, ψ i

j is a very large real value, which 
means that pi is not a feasible solution on task Tj and will be eliminated in 
the selection process. 

Definition 2. (Factorial Rank): The factorial rank ri
j expresses the 

fitness that pi can solve the problem Tj. Specifically, ri
j is the index of pi 

after the population is arranged in the ascending order of ψ i
j on task Tj. 

Definition 3. (Scalar Fitness): The scalar fitness indicates the best 
performance that pi can achieve in all the tasks and is calculated by the 
best factorial rank, as shown in Eq. (3). 

φi =
1

minjϵ{1,2…k}ri
j

(4)  

Definition 4. (Skill factor): The skill factor τi represents the fittest task 
that pi can solve, which is the index of the task that pi achieves the best 
factorial rank, denoted as Eq. (4). 

τi = argminj

{
ri

j

}
(5) 

Each individual in the unified decision space can be decoded to be 
dedicated to a specific task. When the population size is N, and the 
number of tasks is K, it is wasteful as the evaluation times will be N * K 
in one iteration because a solution cannot perform well on all the tasks. 
Therefore, an individual should ideally be evaluated only on the selected 
task most likely to perform well. Inspired by memetic computing [38], 
MFEA proposed the vertical cultural transmission mechanism to address 
this issue. The main idea is the offspring should share the same memetic 
environment with the parents by inheriting the task that the parents 
prefer. The offspring should have the same skill factor as the parent. This 
mechanism dramatically improves the efficiency of function evaluation. 
The frequency of function evaluation is reduced by K times compared 
with the case of evaluating all tasks for each individual. 

MFEA provides the basic framework and theories for solving MTOPs, 
including unified decision space mechanism, solutions encoding and 
decoding method, and the concept of vertical cultural transmission. 
These concepts have a profound impact on the EMT algorithms proposed 
later. The proposed HMOMFMA is also based on the multifactorial 
framework. 

2.2. Evolutionary multitasking 

Since EMT is an emerging research field, researchers have worked on 
this from different aspects. To explore and exert the superiority of EMT, 
various tricks are applied to design and improve EMT algorithms. From 
the perspective of enhancing recombination strategies, Liu et al. [20] 
present a surrogate-assisted multi-tasking memetic algorithm that the 
surrogate model with Gaussian process to predict the optimal solution. 
Feng et al. [21] introduce the particle swarm algorithm and differential 
evolution (DE) algorithm into the EMT field. Song et al. [22] extend a 
dynamic multiswarm algorithm into the EMT area. Each task is arranged 
in an independent swarm, and then each swarm is partitioned into 
multiple sub-swarms, using swarm intelligence to optimize. 

Considering identifying the most appropriate source task, Zhang 
et al. [23] introduce a probability model learned by the estimated dis
tribution algorithm to represent the distribution of solutions and use the 
Wasserstein distance to evaluate the similarity between tasks. Chen et al. 
[24] introduce an archive strategy and a cumulative reward mechanism 
to measure task similarity by computing the kullback-leibler divergence 
of archives. Huang et al. [25] use the covariance matrix to characterize 
the distribution of historical solutions for a specific task and select the 
most suitable task through the similarity of the covariance matrix. 

As for adjusting the frequency of knowledge transfer, Bali et al. [26] 
present a data-driven online learning method to optimize the transfer 
intensity. Zheng et al. [27] propose a novel concept named an ability 
vector to dynamically measure the correlation between the tasks to 
regulate the transfer intensity in the search process automatically. Li 
et al. [28] propose an adaptive transfer strength strategy, where the 
knowledge transfer strength is positively correlated with the transfer 
success rate. 

Based on the view of properly allocating search resources, Gong et al. 
[29] propose a dynamic online resource allocation strategy based on 
problem difficulty, more complex problems will get more computing 
resources. Yao et al. [30] present an EMT algorithm based on decom
position and a dynamic resource allocation strategy, task with faster 
convergence will be allocated more computing resources. Wen et al. [31] 
propose that computing resources should be reallocated when knowl
edge transfer starts to fail. 

Regarding search space mapping, Feng et al. [32] propose a novel 
task mapping mechanism based on denoising autoencoders (EMT-A), 
where the solution of the source task can be projected to the target task 
through the mapping matrix learned by the denoising autoencoder. Bali 
et al. [33] present a linearized domain adaptation method to transform 
the search space of simple tasks into a reconstruction space highly 
correlated with complex tasks. Ding et al. [34] introduce a novel deci
sion variable transformation strategy to map the solutions of different 
tasks into a unified space. 

As for multi-objective multitasking, the research is still in its infancy, 
and the literature is not abundant. Gupta et al. [35] first introduce the 
EMT theory into the multi-objective optimization area and propose the 
multi-objective multifactorial optimization algorithm (MOMFEA). The 
MOMFEA embeds the classic MOEA NSGA-II into the splendid EMT al
gorithm framework multifactorial evolutionary algorithm by analo
gizing the knowledge transfer as the transmission of cultural building 
blocks in memetic computation to optimize multiple MOPs simulta
neously. Liang et al. [36] develop a novel multi-objective multifactorial 
algorithm based on subspace alignment and adaptive differential evo
lution named MOMFEA-SADE. In MOMFEA-SADE, a mapping matrix 
obtained by the subspace alignment strategy is introduced to transform 
the search space to reduce the probability of negative transfer, and an 
improved adaptive differential evolution is applied as the recombination 
operator to enhance search efficiency. Liang et al. [37] hybridize two 
novel strategies that genetic transform and hyper-rectangle search into 
an EMT algorithm, namely MFEA-GHS, which has proved excellent 
performance in multi-objective multitasking. The genetic 
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transformation strategy contributes to transforming search space by 
structuring mapping vectors to improve the efficiency of knowledge 
transfer. The hyper-rectangle approach constructed based on opposition 
learning is devoted to expanding the search ability in each subspace. 

2.3. Motivation 

In the MTOPs area, most of the current algorithms treat all the de
cision variables of the individual in the same way and randomly select 
the dimensions for information transfer while ignoring the characteris
tics of different decision variables and their impact on the individual. 
The decision variables in most MOPs can usually be classified into 
diversity-related decision variables and convergence-related decision 
variables. [46] Diversity-related decision variables are committed to the 
uniform distribution of solutions, and convergence-related decision 
variables are devoted to converging to the optimal point. In the MTOPs, 
if information transfer occurs between the convergence-related decision 
variables in the target task and the diversity-related decision variables in 
the source task, the distance between the decision variables of this 
dimension in the target population will increase, which is not conducive 
to the convergence of the target task. If information transfer occurs 
between the diversity-related decision variables in the target task and 
the convergence-related decision variables of the source task, the dis
tance between decision variables of this dimension in the target popu
lation will shrink. This does not benefit the uniform distribution of the 
solution of the target task. 

To illustrate the impact of the same and different types of decision 
variables on the efficiency of EMT during information transfer, an 
experiment is conducted on the CIHS problem in the classical MOMTO 
benchmark test suite [40], as shown in Fig. 1. The CIHS-T1 is adopted as 
the source task, and CIHS-T2 is adopted as the target task. Each task is a 
bi-objective optimization problem with 50 decision variables. In the 
algorithm’s early and middle stages, the information transfer method is 
not activated to guarantee fairness. The last-generation population is 
applied with different transfer strategies. 

In CIHS1 and CIHS2, the first decision variables are both diversity- 
related, while the remaining decision variables are all convergence- 
related. Fig. 1(a) shows the results of the information transfer of the 
convergence-related decision variables and diversity-related decision 
variables in the source task and the convergence-related decision vari
ables of the target task. When the convergence-related decision variables 
transfer the information to the convergence-related decision variables, 
the target task still maintains remarkable convergence. But when the 
diversity-related decision variable in the source task shares information 
with the convergence-related decision variables in the target task, the 
convergence-related decision variables of the target task will diffuse to 
the surroundings. The direct consequence is that the solutions in the 
objective space will not converge to the true PF. Fig. 1(b) demonstrates 
the different performances of the solutions in the objective space con
ducted by the above two transfer strategies. Fig. 1(c) illustrates the re
sults of the information transfer of the convergence-related decision 
variables and diversity-related decision variables in the source task and 
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Fig. 1. The experiment illustrates the impact of information transfer using different strategies on the target task’s decision variables and objective function values. (a) 
The decision variables values after the information transfer occurs on the convergence-related decision variables. (b) The objective values after the information 
transfer occurs on the convergence-related decision variables. (c) The decision variables values after the information transfer occurs on the diversity-related decision 
variables. (d) The objective values after the information transfer occurs on the diversity-related decision variables. 

Z. Xu et al.                                                                                                                                                                                                                                       



Applied Soft Computing 152 (2024) 111232

5

the diversity-related decision variables in the target task. It can be seen 
that after the information transfer of the diversity-related decision var
iable in the target task and the convergence decision variables in the 
source task, the distances between individuals in the target task become 
smaller. The standard deviation of the diversity-related decision vari

able in the target task is 3.113E-1 after shared information by the 
convergence-related decision variables, while the standard deviation is 
3.124E-1 after shared information by the diversity-related decision 
variables. Fig. 1(d) demonstrates this point by contrasting the perfor
mance of the population in the objective space. The IGD value of solu
tions after taking in the information from the diversity-related decision 
variable is 2.471E-4, which is better than the solutions that receive the 
information from the convergence-related decision variables whose IGD 
value is 2.805E-4. Therefore, we can conclude that information transfer 
should be carried out with decision variables of the same type in the 
source task and the target task, which is beneficial to the effect of EMT. 
On the contrary, information transfer with decision variables of different 
types is likely to lead to negative transfer. 

Therefore, if the algorithm can first classify the decision variables 
according to their characteristics related to diversity or convergence and 
then carry out the corresponding transfer method according to the 
category of the decision variable, the effect of information transfer can 
be significantly improved. This paper proposes an improved and effi
cient way to classify decision variables based on control variable anal
ysis to divide decision variables into diversity and convergence two 
categories. 

3. Proposed method 

3.1. The overall framework of HMOMFMA 

The characteristics of different decision variables should be utilized 
efficiently to improve the efficiency of information transfer. Based on 
this idea, in the proposed HMOMFMA, the decision variables of each 
task will be classified as diversity-related decision variables and 
convergence-related decision variables according to their contribution 
to the diversity and convergence of the population. Different evolu
tionary operators will be applied to the decision variable when gener
ating new individuals according to their type. To accelerate the 
convergence and maintain the diversity, the proposed HMOMFMA hy
bridizes the immune algorithm [39], focusing on the sparsely distributed 

non-dominated solutions in each generation. And the proposed 
HMOMFMA also combines the EGS as the local search operator to 
improve the search capabilities. The overall framework of the proposed 
HMOMFMA is summarized in Algorithm 1. 

Algorithm 1. The overall framework of HMOMFMA. 

First, unlike the classic EMT algorithm, HMOMFMA classifies the 
decision variables according to their contribution to convergence and 
diversity into two types. This strategy fundamentally determines the 
evolutionary operator applied to a specific decision variable, the 
detailed description of the classification method is presented in Section 
3.2. Then the population is initialized, and each individual is encoded 
according to the unified decision space mechanism. All the individuals 
will be assigned to each task evenly. Each individual will be set the 
corresponding skill factor and be evaluated in its task. After that, the 
non-dominated solutions in each task will be picked out to form the non- 
dominated population represented as PN. In addition to ensuring 
convergence, diversity is crucial in the iteration process, so more 
attention should be paid to the sparse areas of the population. Based on 
this point, NA solutions with the most sparse distribution in the objective 
space are selected from PN to form the active population PA as the par
ents of the clone population PC. The sparse degree of the individual is 
evaluated by the maximum extension distance(MED), which has been 
proven to be an efficient and helpful method to assess the density of the 
solution, where a larger MED value indicates the solution is farther away 
from the other solutions in the objective space. The specific calculation 
method of MED is shown in Algorithm 2. 

The proposed HMOMFEA follows the core idea of the immune al
gorithm named clonal selection mechanism, which is inspired by the 
massive asexual reproduction and mitosis of antibody cells in immu
nology [47]. In the immune system, the genes of the progeny cells are 
the same as those of the parent cells, which can enhance the binding to 
the antigen [48]. Clonal selection mechanism believes that better solu
tions should obtain more clone resources, and the purpose is to generate 
more local searches around the excellent solution [49]. The allocation of 
clone resources is carried out according to the MED of the individual in 
PA, that the greater the MED value, the more clone resources it can gain. 
The mathematical model for clonal selection is shown in Eq. (5). 

PC =
⋃NA

i=1
{hi⨂ai}, ai ∈ PA  

Z. Xu et al.                                                                                                                                                                                                                                       



Applied Soft Computing 152 (2024) 111232

6

hi = ⌈NC ×
MED(ai)

∑NA

j=1
MED(aj)

⌉ (6)  

where the operator ⨂ indicates the cloning operator and the parameter 
hi denotes the number of clones of each solution ai in PA. Next, the in

dividuals in PC will undergo recombination and local search to generate 
the offspring population PC′. All the individuals in PC will be recom
bined, and the r of the individuals in PC will perform a local search when 
the local search threshold is reached. The local search adopts the EGS 
strategy, as described in Section 3.4. The recombination can be classified 
into intra-task recombination and inter-task information transfer, and 
different evolutionary operators are used for recombination according to 

the types of decision variables, as shown in Section 3.3. Afterward, 
following the rules of vertical cultural transmission in EMT, each indi
vidual in PC′ is assigned a skill factor and evaluated on the corresponding 
task. Finally, union the PC′ and PN in the current generation and pick out 
all the non-dominated solutions to form the new PN of the next 
generation. 

Algorithm 2. The maximum extension distance. 

3.2. The decision variable classification method for information transfer 

The specific pseudo code of proposed decision variable classification 
method is shown in Algorithm 3. 

Fig. 2. The frequency histograms of the values of 100 offspring generated by SBX and DE respectively.  
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Algorithm 3. The proposed decision variable classification method.  

Firstly, a template solution for control variable analysis is initialized. 
All its dimensions are set to the mean value of the upper and lower 
bounds of the corresponding dimensions of the specific task, as shown in 
line 3. ui and li represent the upper bound and the lower bound of the ith 
decision variable in this task respectively. Then, based on the template 
solution, NS solutions with different values of the ith variable but other 
dimensions remaining unchanged are generated to perform control 
variable analysis on the ith dimension, as shown in line 8, and these 
solutions are saved into the archive S. Next, the solutions in archive S are 
compared based on the dominance relationship. Suppose nj, which 
represents the number of individuals dominating the jth individual in 
the archive, is zero. In that case, that means there not exists a solution 
that can dominate si in the archive S, and si is on the non-dominated 
front. And once such a non-dominated solution is found, NF plus one, 
where NF represents the total number of non-dominated solutions in 
archive S. Finally, if NF is equal to one, the ith dimension decision 
variable will be convergence-related, and the index i is stored in the IC 
set. Otherwise, the ith dimension decision variable is regarded as a 
diversity-related decision variable. The index i is stored in the ID set. 

3.3. Recombination based on the decision variable characteristic 

Effectively utilizing the characteristics of different decision variables 
can speed up the algorithm convergence and ensure the diversity of the 
population. The proposed HMOMFMA applies different recombination 
operators to the diversity-related and convergence-related decision 
variables. Regarding diversity-related decision variables, the offspring 
should be far away from the parent. For convergence-related decision 

variables, the offspring should be near the parent and performs a local 
search around the parent. Therefore, the differential evolutionary 
operator is the recombination operator for diversity decision variables. 
The DE operator will utilize the information of two additional solutions 
randomly selected from the population to optimize the current solution, 
and the generated offspring are less similar to the parent. For conver
gence decision variables, the SBX operator is applied to the recombi
nation operator, and the generated offspring is near the parent, which 
can exploit more promising solutions in the local range while ensuring 
the effective convergence of the algorithm. Fig. 2 shows an example of 
the histogram of the offspring generated by the two operators respec
tively, where the values of the parent x1 and x2 are 0.3 and 0.7, and the 
value of the third parent x3 in the DE operator is randomly selected from 
the decision space. The parameter η in SBX is set to 20, the parameter F 
in DE is set to 1, and both operators are tested 100 times respectively. 

If the knowledge of other tasks can be efficiently utilized in the 
offspring generation process, the efficiency of the optimizing target task 
can be significantly improved. This is the main advantage and essential 
feature of the EMT algorithm. Thus, in the proposed HMOMFMA, the 
genetic mapping transfer strategy [37] is used to map individuals far 
apart in the unified decision space to the areas close to the target task. 
The genetic mapping transfer strategy can significantly improve the 
information transfer efficiency of the source task and reduce the nega
tive transfer. The mathematical expression is shown in Eq. (6). 

xtarget
i = xsource

j ×
xtarget

i + ε̌
xsource

j + ε̌
, i ∈

{
1,…,Dtarger

}
, j ∈ {1,…,Dsource} (7) 

xtarget
i represents the transfer dimension in the target task, and xtarget

i 
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expresses the mean value of this dimension. xsource
j denotes the transfer 

dimension in the source task, xsource
j is the mean value of this dimension, 

and ̌ε indicates a tiny real value. Note that the transfer dimensions of the 
target task and the source task are not one-to-one correspondence but 
are selected according to the characteristics of the decision variables. 
When recombination proceedings, if the skill factors of parents are 

detected to be inconsistent, the genetic mapping transfer strategy will be 
activated to carry out the information transfer. One point that needs 
special attention is that since convergence-related decision variables 
require a local search in the vicinity of the parent, receiving all infor
mation from other tasks indiscriminately is inappropriate. The proposed 
HMOMFMA inherits the random mating probability (rmp) concept in 
MOMFEA. When rmp is met, cross-task knowledge transfer on 
convergence-related decision variables can be performed. If the skill 
factors of the parents are the same, the recombination is performed 
directly without activating the genetic mapping transfer strategy. After 

completing the recombination, if the mutation condition is met, the 
polynomial mutation mutates the decision variable. The pseudo-code of 
the recombination method based on the decision variable characteristic 
is shown in Algorithm 4. 

Algorithm 4. The recombination method based on the decision vari
able characteristic. 

3.4. Local search based on evolutionary gradient search 

To effectively search for better solutions around high-quality solu
tions, which means the non-dominated solutions with sparse distribu
tion, HMOMFMA uses a combination of global search and local search. 
The immune algorithm is applied as a global search optimizer, and EGS 
is used as a local search optimizer. The essential idea of the EGS is to 
follow the gradient information obtained in the evolution process to 
guide the population to move to optimal solutions. In SOPs, the devia
tion of the objective function value is usually used as the gradient 

Table 1 
Parameters setting for MOMTO experiments.  

Parameter Description HMOMFMA MOMFEA MOMFEA-II EMT-A MFEA-SADE MFEA-GHS NSGA-II 

rmp Random mating probability 0.3 0.3 0.3 0.3 0.3 0.3 - 
N Population size for all the task 200 200 200 200 200 200 200 
max FEs Maximum number of evaluations 200,000 200,000 200,000 200,000 200,000 200,000 200,000 
pc Crossover probability 0.9 0.9 0.9 0.9  0.9 0.9 
ηc Distribution index of crossover 20 20 20 20  20 20 
pm Mutation probability 1/D 1/D 1/D 1/D  1/D 1/D 
ηm Distribution index of mutation 20 20 20 20  20 20 
NA Population size of active population 100 -    - - 
NC Population size of clone population 200 -    - - 
F Scaling factor in DE 0.5 -    - - 
ε Step size factor in EGS 1.8 -    - - 
LS Local search rate in EGS 0.02 -    - - 
r Local search proportion in EGS 0.05 -    - - 
LST Local search times in EGS 4 -    - - 
L Number of trial solution in EGS 5 -    - -  
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information. In MOPs, combining the characteristics that the population 
commits to pressing close to the PF and evenly distributed, the proposed 
HMOMFMA applies the average value of the normalized objective 
function value as the fitness F(x) to evaluate the performance of the 
individual to obtain the gradient information in the iterative process. 
The specific pseudo code of EGS in HMOMFMA is shown in Algorithm 5. 

Algorithm 5. Local search based on evolutionary gradient search. 

EGS mainly consists of two steps, estimating the gradient direction 
through evolution and updating the solution using gradient descent. To 
estimate the gradient direction, first, the L trial solutions ri are generated 
by perturbing the parent by the normal distribution N (0,σt

2), where σt 
controls the mutation strength. Then, according to the principle of 
vertical cultural transmission, the skill factor is assigned to ri and 
evaluated. The calculation of the gradient requires one single fitness 
index. Here the average of the normalized objective value is utilized as 
the fitness value. Afterward, the gradient is calculated according to the 
method shown in line 8. Next, the offspring solution o is generated using 
the gradient descent method, as shown in line 9. Then, according to the 
dominant relationship between the parent individual ̌a and the offspring 
individual o, the mutation step σt is updated. If the offspring o can 
dominate parent ̌a, then the current ̌a will be replaced by the offspring o, 
and the σt will be multiplied by the coefficient ε. Otherwise, the σt will 
be divided by the coefficient ε, where the coefficient ε is generally set to 
1.8 [41]. Finally, when the local search times reach LST, the local search 
process is terminated, and the final individual ̌a is output as the result of 
the local search. 

3.5. Complexity analysis 

In this section, the computational complexity of one generation of 
the proposed HMOMFMA is discussed. Suppose d denotes the total 
number of the dimensions of the unified decision space, ND indicates the 
population size of the nondominated population, NC expresses the 
population size of the clone population, NA expresses the population size 
of the active population, m indicates the total number of the objective 
functions, NS is the number of sampling points from a single dimension 
of decision variables. Before the population is initialized, the decision 
variables will be classified. This classification is one-time, so the algo
rithm complexity is O(dNS2). In the environment selection, the time 
complexities of the nondominated sorting is O(m(ND+ NC)2), the 
calculating of the MED is O(mNA), and the updating of the archive active 
population is O(mNDlogND), respectively. The time complexity of the 

information transfer is O(dND). The time complexity of the cloning is O 
(NC), and the time complexity of the recombination and hypermutation 
is O(dNC). For the local search operator EGS, its time complexity is 
related to the depth of its search and the probability of occurrence. Its 
time complexity is O(LS× LST× r× L× ND). Overall, the total compu
tational complexity of HMOMFMA is (O(m(ND+ NC)2) + O(MNA) + O 
(mNDlogND) + O(dND) + O(NC) + O(dNC))xO(LS× LST× r× L× ND). 

According to the operation rules of symbol O, the time complexity of the 
proposed HMOMFMA can be simplified as O(m× (ND+ NC)2× LS×
LST× r× L× ND). However, considering that the number and proba
bility of local search usage is very small, in actual use, the speed of the 
algorithm will not be significantly reduced. 

4. Experiments 

4.1. Test suites introduction 

In MTOPs, the similarity of the fitness landscape and the degree of 
intersection of optimal solutions are the two most important factors 
affecting the effectiveness of genetic information transfer between tasks. 
If the values of the corresponding dimensions of the optimal solutions of 
different tasks are closer, the transfer of genetic information between 
tasks is more conducive to optimization. Likewise, the more similar the 
fitness landscapes of optimization functions for different tasks are, the 
more knowledge individuals learn from source tasks can indirectly help 
optimize target tasks. According to the intersection degree of the global 
optimum, the classic MOMTO benchmark test problems are designed 
into three categories: complete intersection (CI), partial intersection 
(PI), and non-intersection (NI). According to the similarity of the fitness 
landscape, the classic MOMTO benchmark test problems can be divided 
into three categories of high similarity (HS), medium similarity (MS), 
and low similarity (LS). The classic MOMTO benchmark suite consists of 
nine consecutive multi-objective problems based on combining the 
above two classification strategies. Details of the classic MOMTO 
benchmark test suite can be found in [40]. The complex MOMTO 
benchmark test suite named CPLX is first introduced in the IEEE CEC 
2019 competition on evolutionary multi-task optimization [42], which 
is more difficult than the classical test suite. The sub-problem of it is 
designed according to [43]. 

4.2. Compared algorithms 

The proposed HMOMFMA will be compared with five state-of-the-art 
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multi-objective EMT algorithms MOMFEA [35], MOMFEA-II [26], 
EMT-A [32], MFEA-SADE [36], and MFEA-GHS [37] and a classic 
MOEA, namely NSGA-II [6]. MOMFEA [35] is the earliest and most 
classic multi-objective EMT algorithm, which can be regarded as the 
benchmark of multi-objective EMT algorithm. The well-known NSGA-II 
[6] is the basis for MOMFEA to apply the multitasking theory to process 
MTOPs. By comparing the performance of MOMFEA and NSGA-II, it can 
show the advantages of the multi-objective EMT algorithm over tradi
tional MOEA, so NSGA-II is also included as one of the comparison al
gorithms. MOMFEA-II [26] applied a data-driven online learning 
method to optimize the transfer intensity during the search process to 
solve MOMTO problems and reduce negative transfers. EMT-A [32] 
applies the denoising autoencoder in the MFEA to map different tasks’ 
decision spaces. MFEA-SADE [36] employs the subspace alignment 
strategy and adaptive differential evolutionary operator into MFEA. 
MFEA-GHS [37] is the improved version of MFEA that introduces ge
netic transform and hyper-rectangle search strategies into MFEA. All the 
algorithms are implemented utilizing the Jmetal 4.5.2 [45]. The plat
form on which the algorithm runs is a PC with Intel Core i5–9400 F CPU 
2.90 GHz, and 16.00 GB of RAM. 

4.3. Parameter settings 

For a fair comparison, in MOMFEA, MOMFEA-II, EMT-A, MFEA- 
SADE, and MFEA-GHS, the population size is set to 200, but in NSGA- 
II, the population size for each task is set to 100. For the EMT algo
rithms, the maximum number of fitness evaluations is 200,000, but for 
the conventional MOEA like NSGA-II, the maximum number of evalu
ations for each task is set to 100,000. The parameter settings of the 
comparison algorithms are consistent with the original paper. The de
tails of all the parameter settings are summarized in Table 1. 

4.4. Performance indicators 

For each benchmark problem, 10,000 points in the three-objective 
task and 1000 points in the two-objective task are sampling in true PF 
to evaluate the inverted generational distance (IGD) [44]. The IGD in
dicator measures the distance between the true PF and the closest in
dividual in the obtained solutions. The indicator can be expressed as Eq. 
7. where Disti is the Euclidean Distance between the ith solution in the 
true PF and the closest individual in the obtained solutions and NPF is the 
number of the sampling points. The lower the IGD value is, the better the 
convergence and diversity of the population. 

IGD =

(
∑NPF

i=1
Dist2

i

)1/2

NPF
(8)  

4.5. Performance on classical MOMTO benchmark test suite 

The experimental result of the classical MOMTO benchmark test 
suite is shown in Table 2. The average and standard deviation of IGD 
values over 20 independent runs of each algorithm are demonstrated, 
and the best result on each sub-problem is marked in gray. The Wilcoxon 
rank-sum test at the 95% confidence level was applied for the experi
mental results to compare the proposed HMOMFMA with other com
parison algorithms. The significantly better, significantly worse, and not 
comparable results are represented using “+ ,” “-,” and “= ,” respec
tively. In the classical MOMTO benchmark test suites, the multi- 
objective EMT algorithm can defeat the classic single-task MOEA 
NSGA-II on most benchmark test problems. This is mainly due to the 
knowledge-sharing and transferring mechanism of the EMT algorithm, 
which indicates that the multitasking optimization theory is indeed 
effective. From Table 2, compared to the state-of-the-art MOEAs 
MOMFEA, MOMFEA-II, EMT-A, MFEA-SADE, MFEA-GHS and NSGA-II, 
in terms of the IGD metric, the proposed HMOMFMA obtains superior 
results on 15, 15, 13, 15, 16 and 16 out of 20 sub-problems respectively 
in the complex MOMTO test suite. 

Concerning the classical MOMTO benchmark test suite, the proposed 
HMOMFMA can perform best on high similarity (HS) problems such as 
CIHS-T1, PIHS, NIHS. This is because HMOMFMA classifies the decision 
variables according to their contribution to the diversity and conver
gence of the population and only transfers knowledge between decision 
variables of the same type between tasks, which makes the algorithm not 
interfere with the phased results of the target task and can effectively 
improve the knowledge reuse rate. When the two simultaneously opti
mized tasks possess high similarity, this strategy can significantly 
enhance algorithm performance. For problems with low similarities, 
such as PILS and NILS-T2, even if the coincidence degree of the optimum 
points is not high, the local search strategy based on EGS can constantly 
dig out potential better solutions to push the population forward. 
Therefore, HMOMFMA has also achieved significant advantages in these 
problems. 

4.6. Performance on complex MOMTO benchmark test suite 

The experimental results of the complex MOMTO benchmark test 
suite are shown in Table 3. The average and standard deviation of IGD 

Table 2 
Averaged value and standard deviation of the IGD on the classical MOMTO test suite.  

Problem Task HMOMFMA MOMFEA MOMFEA-II EMT-A MFEA-SADE MFEA-GHS NSGA-II 

CIHS T1 3.35E-04 3.80E-04(+) 4.69E-04(+) 3.65E-04(+) 3.89E-03(+) 1.57E-03(+) 1.97E-03(+)  
T2 8.64E-04 2.66E-03(+) 2.36E-03(+) 2.15E-04(-) 9.50E-04(+) 5.69E-03(+) 4.36E-03(+) 

CIMS T1 4.19E-02 6.62E-02(+) 1.76E-01(+) 1.82E-01(+) 3.26E-04(-) 1.09E-01(+) 1.14E-01(+)  
T2 5.72E-03 1.13E-02(+) 3.88E-04(-) 2.01E-02(+) 8.25E-04(-) 1.42E-02(+) 2.34E-02(+) 

CILS T1 8.30E-02 3.16E-04(-) 3.84E-04(-) 2.46E-04(-) 3.91E-03(-) 6.04E-01(+) 2.84E-01(+)  
T2 3.28E-04 1.98E-04(-) 3.95E-04(+) 1.90E-04(-) 5.01E-04(+) 4.16E-04(-) 2.02E-04(-) 

PIHS T1 4.38E-04 9.13E-04(+) 4.55E-04(+) 9.94E-04(+) 4.72E-04(+) 2.17E-03(+) 1.36E-03(+)  
T2 6.83E-03 2.51E-02(+) 1.48E-02(+) 3.95E-02(+) 2.22E-01(+) 5.89E-01(+) 5.91E-02(+) 

PIMS T1 1.86E-03 4.11E-03(+) 2.26E-03(+) 1.88E-03(+) 2.39E-02(+) 5.42E-03(+) 4.11E-03(+)  
T2 1.33E+ 01 1.53E+ 01(+) 1.36E+ 01(+) 2.52E+ 00(-) 1.52E+ 01(+) 1.55E+ 01(+) 1.60E+ 01(+) 

PILS T1 2.66E-04 3.18E-04(+) 4.57E-04(+) 3.07E-04(+) 1.10E-02(+) 5.25E-04(+) 2.75E-04(+)  
T2 5.56E-03 1.23E-02(+) 5.68E-03(+) 6.39E-02(+) 1.72E+ 00(+) 2.96E-02(+) 6.35E-01(+) 

NIHS T1 1.33E+ 00 1.56E+ 00(+) 1.52E+ 00(+) 1.57E+ 00(+) 4.46E+ 01(+) 5.38E+ 00(+) 5.21E+ 01(+)  
T2 2.42E-04 4.71E-04(+) 4.93E-04(+) 3.26E-04(+) 4.68E-04(+) 4.61E-03(+) 8.09E-04(+) 

NIMS T1 1.15E-01 4.18E-01(+) 3.76E-01(+) 1.88E-01(+) 1.41E+ 01(+) 2.81E-01(+) 4.40E-01(+)  
T2 6.31E-04 2.70E-02(+) 1.38E-02(+) 7.27E-04(+) 1.53E-03(+) 4.77E-02(+) 6.44E-02(+) 

NILS T1 1.07E-02 8.33E-04(-) 1.11E-03(-) 6.52E-04(-) 1.67E-02(+) 9.70E-04(-) 7.85E-04(-)  
T2 2.38E-04 6.43E-01(+) 6.42E-01(+) 4.88E-01(+) 1.92E+ 01(+) 6.43E-01(+) 6.42E-01(+)    

+ 15/− 3/= 0 + 15/− 3/= 0 + 13/− 5/= 0 + 15/− 3/= 0 + 16/− 2/= 0 + 16/− 2/= 0  
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values over 20 independent runs of each algorithm are demonstrated, 
and the best result on each sub-problem is marked in gray. The Wilcoxon 
rank-sum test at the 95% confidence level was applied for the experi
mental results to compare the proposed HMOMFMA with other com
parison algorithms. From Table 3, compared to the state-of-the-art EMT 
algorithms MOMFEA, MOMFEA-II, EMT-A, MFEA-SADE, and MFEA- 
GHS, in terms of the IGD metric, the proposed HMOMFMA obtains su
perior results on 18, 20, 14, 13, and 20 out of 20 sub-problems respec
tively in the complex MOMTO test suite. Compared to NSGA-II, the 
proposed HMOMFMA can get better results on all sub-problems. 

The proposed HMOMFMA can achieve such good results on the 
complex MOMTO benchmark test suite because the knowledge transfer 
method based on decision variable classification can reduce the inter
ference caused by the different types of decision variables transferring 
knowledge between tasks. The proposed HMOMFMA combines the im
mune algorithm and EGS as global and local search operators, respec
tively. The immune algorithm has strong convergence performance and 
maintains the diversity of the population through clone resource allo
cation. In contrast, EGS has good local search performance and can 
accelerate convergence by adapting the mutation length and guiding the 

evolution according to the gradient information. The collaboration of 
global search and local search can significantly improve the conver
gence ability of the algorithm, making HMOMFMA perform best on the 
complex MOMTO benchmark test suite. 

4.7. Discussion of proposed strategies 

This section discusses the contribution of each proposed strategy to 
the performance of the proposed algorithm. Table 4 shows the results of 
decision variables classification on the classical and complex MOMTO 
benchmark test suites. Table 5 shows the IGD values of the multi- 
objective EMT evolution strategy algorithms with different operators 
on the classical MOMTO benchmark test suite, respectively. The average 
metric values over 20 independent runs of each algorithm are demon
strated, and the best result for each sub-problem is marked in gray. In 
addition, the Wilcoxon rank-sum test at the 95% confidence level was 
applied for the experimental results to compare the proposed 
HMOMFMA with other comparison algorithms. The significantly better, 
significantly worse, and not comparable results are represented using 
“+ ,” “-,” and “= ,” respectively. The MOMFMA only uses the multi- 

Table 3 
Averaged value and standard deviation of the IGD on the complex MOMTO test suite.  

Problem Task HMOMFMA MOMFEA MOMFEA-II EMT-A MFEA-SADE MFEA-GHS NSGA-II 

CPLX1 T1 5.03E-04 4.31E-04(-) 1.87E-02(+) 2.54E-04(-) 2.86E-04(-) 5.37E-04(+) 5.26E-04(+)  
T2 8.82E-04 5.72E-03(+) 1.64E-01(+) 4.62E-03(+) 1.25E-03(+) 5.51E-03(+) 7.07E-03(+) 

CPLX2 T1 3.54E-04 3.90E-04(+) 1.71E-02(+) 2.47E-04(-) 2.78E-04(-) 4.84E-04(+) 4.22E-04(+)  
T2 6.23E-03 4.15E-03(-) 1.70E-01(+) 1.27E-02(+) 6.81E-04(-) 1.22E-02(+) 1.04E-02(+) 

CPLX3 T1 1.71E-03 5.41E-03(+) 1.57E-01(+) 3.68E-03(+) 1.88E-03(+) 4.54E-03(+) 4.94E-03(+)  
T2 1.81E-03 2.97E-03(+) 1.38E-01(+) 1.79E-03(-) 1.41E-03(-) 2.79E-03(+) 2.56E-03(+) 

CPLX4 T1 1.26E-03 4.27E-03(+) 1.64E-01(+) 6.62E-03(+) 1.76E-03(+) 5.27E-03(+) 6.18E-03(+)  
T2 1.83E-03 4.73E-03(+) 1.95E-01(+) 8.03E-03(+) 2.17E-03(+) 4.50E-03(+) 6.73E-03(+) 

CPLX5 T1 1.93E-03 2.32E-03(+) 1.07E-01(+) 5.19E-03(+) 2.19E-03(+) 2.68E-03(+) 2.54E-03(+)  
T2 3.20E-03 6.14E-03(+) 2.84E-01(+) 1.76E-02(+) 3.56E-03(+) 5.93E-03(+) 6.60E-03(+) 

CPLX6 T1 1.15E-03 2.79E-03(+) 1.11E-01(+) 3.92E-03(+) 2.06E-03(+) 2.56E-03(+) 3.90E-03(+)  
T2 1.83E-03 5.18E-03(+) 2.01E-01(+) 5.46E-03(+) 3.31E-03(+) 4.94E-03(+) 7.11E-03(+) 

CPLX7 T1 2.09E-03 2.54E-03(+) 1.47E-01(+) 2.21E-03(+) 1.37E-03(-) 2.57E-03(+) 2.58E-03(+)  
T2 9.02E-04 1.38E-03(+) 1.13E-01(+) 2.26E-03(+) 1.41E-03(+) 2.24E-03(+) 2.16E-03(+) 

CPLX8 T1 8.75E-04 2.74E-03(+) 1.13E-01(+) 4.87E-03(+) 9.22E-04(+) 2.77E-03(+) 1.89E-03(+)  
T2 8.51E-03 1.12E-02(+) 3.55E-01(+) 7.62E-03(-) 2.24E-03(-) 8.58E-03(+) 9.97E-03(+) 

CPLX9 T1 3.63E-03 6.17E-03(+) 2.94E-01(+) 3.21E-03(-) 4.25E-03(+) 7.35E-03(+) 6.26E-03(+)  
T2 1.21E-03 6.04E-03(+) 1.99E-01(+) 4.56E-03(+) 4.09E-03(+) 5.27E-03(+) 6.24E-03(+) 

CPLX10 T1 9.56E-03 1.21E-02(+) 3.18E-01(+) 8.21E-03(-) 7.19E-03(-) 1.15E-02(+) 1.07E-02(+)  
T2 8.88E-03 9.70E-03(+) 2.31E-01(+) 9.67E-03(+) 9.69E-03(+) 9.25E-03(+) 1.08E-02(+)    

+ 18/− 2/= 0 + 20/− 0/= 0 + 14/− 6/= 0 + 13/− 7/= 0 + 20/− 0/= 0 + 20/− 1/= 0  

Table 4 
The results of decision variables classification on the mainstream benchmarks.  

MTOP Number of objectives Number of variables Diversity-related variables Convergence-related variables 

CIHS-T1, CIHS-T2, 
CILS-T1, CILS-T2, 
PIHS-T1, PIHS-T2, 
PIMS-T1, PIMS-T2, 
PILS-T1, PILS-T2, 
NIHS-T1, NIHS-T2 

2 50 x1 x2, …, x50 

CIMS-T1 2 10 x1 x2, …, x10 

CIMS-T2 2 10 x1, x9 x2, …, x8, x10 

NIMS-T1 3 20 x1, x2 x3, …, x20 

NIMS-T2 2 20 x1, x2 x3, …, x20 

NILS-T1 3 25 x1, x2 x3, …, x24 

NILS-T2 2 50 x1, x2 x3, …, x50 

CPLX1-T1, CPLX2-T1 2 10 x1, x10 x2, …, x9 

CPLX1-T2, CPLX3-T1, 
CPLX3-T2, CPLX4-T1, 
CPLX4-T2, CPLX5-T1, 
CPLX6-T1, CPLX6-T2, 
CPLX7-T1, CPLX7-T2, 
CPLX8-T1, CPLX9-T2 

2 30 x1 x2, …, x30 

CPLX2-T2, CPLX8-T2, 
CPLX10-T1, CPLX10-T2 

2 10 x10 x1, …, x9 

CPLX5-T2, CPLX9-T1 3 10 x1 x2, …, x10  
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Table 5 
Averaged value of IGD obtained by MOMFMA, MOMFMA-DVC, MOMFMA-LS, HMOMFMA on the classical MOMTO benchmark test suite.  

Problem Task MOMFMA MOMFMA-DVC MOMFMA-LS HMOMFMA 

CIHS T1 1.11E-03(+) 9.89E-04(+) 4.20E-04(+) 3.35E-04  
T2 1.39E-03(+) 9.52E-04(+) 9.97E-04(+) 8.64E-04 

CIMS T1 1.05E-01(+) 1.00E-01(+) 8.94E-02(+) 4.19E-02  
T2 1.07E-02(+) 7.10E-03(+) 9.77E-03(+) 5.72E-03 

CILS T1 2.69E-01(+) 2.37E-01(+) 2.43E-01(+) 8.30E-02  
T2 3.93E-04(+) 3.66E-04(+) 3.56E-04(+) 3.28E-04 

PIHS T1 8.98E-04(+) 8.72E-04(+) 7.41E-04(+) 4.38E-04  
T2 2.95E-02(+) 2.67E-02(+) 1.08E-02(+) 6.83E-03 

PIMS T1 1.06E-02(+) 5.39E-03(+) 4.65E-03(+) 1.86E-03  
T2 4.25E+ 01(+) 4.14E+ 01(+) 3.78E+ 01(+) 1.33E+ 01 

PILS T1 2.87E-04(+) 2.75E-04(+) 2.69E-04(+) 2.66E-04  
T2 1.00E-02(+) 6.12E-03(+) 7.47E-03(+) 5.56E-03 

NIHS T1 5.54E+ 00(+) 4.78E+ 00(+) 2.26E+ 00(+) 1.33E+ 00  
T2 9.77E-04(+) 7.20E-04(+) 8.49E-04(+) 2.42E-04 

NIMS T1 2.74E-01(+) 1.31E-01(+) 1.25E-01(+) 1.15E-01  
T2 3.56E-03(+) 1.55E-03(+) 1.07E-03(+) 6.31E-04 

NILS T1 4.02E-02(+) 2.21E-02(+) 2.54E-02(+) 1.07E-02  
T2 8.84E-03(+) 4.73E-03(+) 4.60E-03(+) 2.38E-04   

+ 18/− 0/= 0 + 18/− 0/= 0 + 18/− 0/= 0   

Table 6 
Averaged value of IGD obtained by HMOMFMA with different LS on the classical MOMTO benchmark test suite.  

Problem Task HMOMFMA 
LS= 0.01 

HMOMFMA 
LS= 0.02 

HMOMFMA 
LS= 0.05 

HMOMFMA 
LS= 0.1 

HMOMFMA 
LS= 0.2 

HMOMFMA 
LS=0.4 

CIHS T1 4.28E-04(+) 3.35E-04 5.18E-04(+) 5.97E-04(+) 6.75E-04(+) 9.18E-04(+)  
T2 9.59E-04(+) 8.64E-04 1.02E-03(+) 1.06E-03(+) 1.40E-03(+) 5.13E-03(+) 

CIMS T1 1.53E-01(+) 4.19E-02 1.52E-01(+) 1.28E-01(+) 1.14E-01(+) 1.37E-01(+)  
T2 1.03E-02(+) 5.72E-03 6.49E-03(+) 1.29E-02(+) 1.39E-02(+) 8.48E-03(+) 

CILS T1 2.61E-01(+) 8.30E-02 3.25E-01(+) 2.39E-01(+) 2.55E-01(+) 4.45E-01(+)  
T2 3.75E-04(+) 3.28E-04 4.15E-04(+) 4.98E-04(+) 5.83E-04(+) 6.75E-04(+) 

PIHS T1 5.94E-04(+) 4.38E-04 8.07E-04(+) 9.78E-04(+) 3.83E-03(+) 2.95E-03(+)  
T2 1.18E-02(+) 6.83E-03 2.11E-02(+) 1.70E-02(+) 4.29E-02(+) 1.10E-01(+) 

PIMS T1 8.02E-03(+) 1.86E-03 8.74E-03(+) 7.85E-03(+) 1.47E-02(+) 1.44E-02(+)  
T2 3.55E+ 01(+) 1.33E+ 01 3.75E+ 01(+) 3.32E+ 01(+) 3.82E+ 01(+) 3.67E+ 01(+) 

PILS T1 2.95E-04(+) 2.66E-04 2.96E-04(+) 3.38E-04(+) 3.40E-04(+) 9.48E-04(+)  
T2 5.95E-03(+) 5.56E-03 6.40E-03(+) 7.79E-03(+) 1.05E-02(+) 9.59E-03(+) 

NIHS T1 3.43E+ 00(+) 1.33E+ 00 3.75E+ 00(+) 4.32E+ 00(+) 4.85E+ 00(+) 4.58E+ 00(+)  
T2 6.05E-04(+) 2.42E-04 5.86E-04(+) 9.02E-04(+) 1.84E-03(+) 2.70E-03(+) 

NIMS T1 1.29E-01(+) 1.15E-01 1.53E-01(+) 2.29E-01(+) 2.56E-01(+) 2.46E-01(+)  
T2 1.67E-03(+) 6.31E-04 3.07E-03(+) 2.04E-03(+) 1.79E-03(+) 6.77E-03(+) 

NILS T1 1.07E-02(=) 1.07E-02 1.07E-02(=) 1.06E-02(-) 1.07E-02(=) 1.08E-02(+)  
T2 2.54E-04(+) 2.38E-04 2.56E-04(+) 2.52E-04(+) 2.55E-04(+) 2.58E-04(+)   

+ 17/− 0/= 1  + 17/− 0/= 1 + 17/− 1/= 0 + 17/− 0/= 1 + 18/− 0/= 0  

Table 7 
Averaged value of IGD obtained by HMOMFMA with different r on the classical MOMTO benchmark test suite.  

Problem Task HMOMFMA 
r = 0.05 

HMOMFMA 
r = 0.1 

HMOMFMA 
r = 0.2 

HMOMFMA 
r = 0.5 

HMOMFMA 
r = 0.8 

CIHS T1 3.35E-04 5.59E-04(+) 5.11E-04(+) 6.33E-04(+) 7.25E-04(+)  
T2 8.64E-04 9.98E-04(+) 9.52E-04(+) 9.53E-04(+) 1.39E-03(+) 

CIMS T1 4.19E-02 1.46E-01(+) 1.22E-01(+) 1.08E-01(+) 1.36E-01(+)  
T2 5.72E-03 1.03E-02(+) 8.61E-03(+) 7.75E-03(+) 7.54E-03(+) 

CILS T1 8.30E-02 2.69E-01(+) 3.02E-01(+) 2.98E-01(+) 4.28E-01(+)  
T2 3.28E-04 3.93E-04(+) 3.88E-04(+) 4.09E-04(+) 4.36E-04(+) 

PIHS T1 4.38E-04 5.98E-04(+) 7.91E-04(+) 7.08E-04(+) 8.63E-04(+)  
T2 6.83E-03 1.02E-02(+) 8.38E-03(+) 1.84E-02(+) 3.12E-02(+) 

PIMS T1 1.86E-03 7.68E-03(+) 7.72E-03(+) 9.04E-03(+) 1.01E-02(+)  
T2 1.33E+ 01 4.26E+ 01(+) 2.98E+ 01(+) 3.81E+ 01(+) 2.91E+ 01(+) 

PILS T1 2.66E-04 2.91E-04(+) 2.73E-04(+) 2.88E-04(+) 2.85E-04(+)  
T2 5.56E-03 6.71E-03(+) 6.12E-03(+) 7.47E-03(+) 1.00E-02(+) 

NIHS T1 1.33E+ 00 3.35E+ 00(+) 4.10E+ 00(+) 4.87E+ 00(+) 4.76E+ 00(+)  
T2 2.42E-04 6.62E-04(+) 7.14E-04(+) 9.10E-04(+) 1.06E-03(+) 

NIMS T1 1.15E-01 2.63E-01(+) 1.88E-01(+) 1.80E-01(+) 1.33E-01(+)  
T2 6.31E-04 1.31E-03(+) 1.18E-03(+) 1.22E-03(+) 1.55E-03(+) 

NILS T1 1.07E-02 1.07E-02(=) 1.07E-02(=) 1.07E-02(=) 1.05E-02(-)  
T2 2.38E-04 2.65E-04(+) 2.47E-04(+) 2.72E-04(+) 2.47E-04(+)    

+ 17/− 0/= 1 + 17/− 0/= 1 + 17/− 0/= 1 + 17/− 1/= 0  
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objective multifactorial immune algorithm. MOMFMA-DVC applies the 
evolutionary recombination strategy based on decision variables’ 
characteristics to MOMFMA. MOMFMA-LS hybrids the EGS as the local 
search operator to MOMFMA. The parameters of the comparison algo
rithm are consistent. It can be seen from Table 5 that the algorithm re
sults of MOMFMA-DVC and MOMFMA-LS are better than MOMFMA in 
18 sub-problems. This proves that the evolutionary recombination 
strategy based on decision variables’ characteristics and EGS as a local 
search operator are valid. And the combination of the two strategies can 
greatly improve the performance of the algorithm. 

4.8. Parameter sensitivity analysis 

In order to ensure that the parameter settings used by the proposed 
algorithm are reasonable, in this section, the parameters LS and r 
involved in the local search operator of the algorithm are analyzed. A 
comparative experiment on the classical multi-objective multi-task 
optimization benchmark test suite is conducted. The average values over 
20 independent runs of each algorithm are demonstrated, and the best 
result for each sub-problem is marked in gray. In addition, the Wilcoxon 
rank-sum test at the 95% confidence level was applied for the experi
mental results, where significantly better, significantly worse, and not 
comparable are indicated using “+ ”, “-”, and “= ”, respectively. The 
IGD values of the classical MOMTO benchmark test suites are listed in 
Table 6 and Table 7, respectively. 

5. Conclusion 

This paper proposes a novel evolutionary multitasking algorithm for 
multi-objective optimization, namely HMOMFMA, by hybridizing the 
decision variable classification method, multi-objective immune algo
rithm, and evolutionary gradient search. The decision variable classifi
cation method is applied to classify the decision variables into 
convergence and diversity-related decision variables. Unique strategies 
will be used for different decision variables during recombination and 
information transfer. This can bring benefits for improving information 
transfer efficiency in multitasking optimization and accelerating 
convergence. The immune algorithm focuses on the most sparsely 
distributed nondominated solutions in the population, has strong 
convergence ability, and can guarantee the diversity of the population. 
The evolutionary gradient search method is introduced as the local 
search operator, which can accelerate convergence by adaptively 
adjusting the mutation length and guiding the evolution according to the 
gradient information. Comprehensive experiments are conducted on 
both the classical and complex MOMTO test suites. The proposed 
HMOMFMA is compared with five state-of-the-art multi-objective EMT 
algorithms, MOMFEA [35], MOMFEA-II [26], EMT-A [32], MFEA-SADE 
[36], and MFEA-GHS [37] and a classic MOEA, namely NSGA-II [6]. The 
experimental results demonstrate that the proposed HMOMFMA is su
perior to other advanced EMT algorithms. 

However, some issues can still be considered in future work. First, 
the proposed HMOMFMA can extend to optimize three or more tasks 
simultaneously. The modules that can select the most appropriate task 
for transferring from multiple tasks should be designed. Second, the 
method of classifying decision variables can be improved, and dynamic 
classification can also be considered during the process of evolutionary 
iteration. Next, the proposed HMOMFMA mainly solves general MOPs. 
The improved HMOMFMA can also solve expensive MOPs, dynamic 
MOPs, large-scale MOPs, multimodal MOPs, and other more complex 
problems. Finally, the information transfer method in the proposed 
HMOMFMA can be further improved to reduce the negative transfer. 
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