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ABSTRACT

Most existing multimodal multi-objective evolutionary algorithms
only search the global Pareto front of the problem while ignoring
the excellent local Pareto front of the problem. To address this issue,
an optimization algorithm with population clustering mechanism
is proposed to settle multimodal multi-objective problems with
local Pareto front. At the first step, a partitioning method is used
to divide the total population into main rank and other ranks and
a population clustering method is proposed to repartition the en-
tire population into global Pareto front subpopulations and local
Pareto front subpopulations. In the second step, each subpopulation
evolves independently and the diversity in the objective space and
decision space are considered simultaneously. An improved density
adaptive adjustment strategy is put forward to enhance the diver-
sity of the population in the decision space. In the experimental part,
the algorithm is compared with several other state-of-the-art algo-
rithms using the CEC 2019 MMOPs test case, and the result of the
experiment confirm that the algorithm proposed shows excellent
performance.
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Figure 1: Individuals are more evenly distributed after adding
main rank decision space density adjustment and diversity
adjustment. (MMF12) (a) is the decision space (b) is the objec-
tive space. Results density adjustment strategy of [9] run on
MMF12 (c) is the decision space (d) is the objective space, the
global PF distribution and diversity is excellent, but the local
PF is weak with respect to the distribution and convergence

on Machine Learning and Soft Computing (ICMLSC) (ICMLSC 2023), Jan-
uary 05-07, 2023, Chongqing, China. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3583788.3583793

1 INTRODUCTION

Multimodal Multi-objective problems (MMOPs) mean that there are
two or more Pareto sets (PS) corresponding to the same Pareto front
(PF) in a problem. The multimodal multi-objective evolutionary
algorithms (MMOEAs) are raised to resolve the MMOPs. Many
MMOEAs have been put forward to handle MMOPs with global PF.
But they cannot give satisfactory results for MMOPs with local PF.

In real world, for problems with global PF and local PF, the local
PF can be the choice of the decision maker when the global PF is
not available as an option for reasons such as accidental or realistic
unattainability. Therefore, for practical problems, it is important
and necessary to get both the global PF and the local PF.

In order to handle the problem mentioned above, a population
clustering multimodal multi-objective evolutionary algorithm (PC-
MMOEA) is presented. First, the global PF and the local PF of the
problem are found by local exploration. Second, the population is
divided and the global PF and the local PF are separated. Then, the
subpopulations evolve independently without being influenced by
other subpopulations to ensure that the global PF will not eliminate
the local PF.

The major contributions of the paper are listed below. First, a
population clustering mechanism is proposed. The selection process
is restricted in the respective rank, which can avoid the local PF
from being dominated by global PF. The second one is an improved
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Figure 2: The result of PC-MMOEAs runs on the 23 MMOPs

density adaptive adjustment strategy, which improved population
diversity of decision space

The rest of this paper mainly is made up by the sections below,
the second section introduces the related works of MMOPs and
MMOEA. Section three elaborates the algorithm proposed with
detailed descriptions. The forth section present the experiments
and the data, and the comparison between the proposed algorithm
and other state-of-the-art algorithms is shown. The fifth section
gives a summary of the whole paper and gives the future work.

2 RELATED WORKS AND MOTIVATION
The MMOPs can be briefly summed up in the following formula:

minF (x) = (fi ()., fu (x))

Where x=(x1, ..., xm)represents the value of the decision space,
m stands for the number of decision variables, R is the decision
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space. fi(x),..., fn(x) represents the values of the objective func-

tions, n is the number of objective functions. The PFs of different
MMOPs are diverse. Some problems only have the global PF, while
others carry both the global PF and the local PF.

However, there are several difficulties to solve MMOPs with both
local PF and global PF. (1) good convergence of the solution set
in the objective space; (2) excellent diversity of the solution set in
the objective space; (3) excellent diversity of the solution set in the
decision space.

2.1 Multimodal multi-objective optimization
approaches
2.1.1  Non-dominated sorting-based Approaches. These algorithms

are based on non-dominated sorting and have good convergence.
Preferentially selecting individuals with lower non-dominated rank-
ing and adding other criteria in environment selection to improve
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Table 1: Average IGD values over 30 runs on CEC 2019 MMOPs, where the best mean is shown in a GRAY background

Problem MMOCLRPSO CPDEA MOEADAD MO_Ring_PSO_SCD NIMMO TriMOEATAR PC-

MMOEA
MMF1 3.2043e-3- 2.4131e-3+ 6.5547e-3- 4.0051e-3- 5.1367e-3- 3.5960e-3- 2.7065e-3
MMF2 5.1888e-3- 3.4217e-3- 1.5792e-2- 1.0015e-2- 1.1040e-2- 4.9598e-3- 3.2281e-3
MMF3 5.6470e-3- 4.4043e-3- 1.7710e-2- 8.7345e-3- 1.0635e-2- 9.7236e-3- 4.2808e-3
MMF4 3.0935e-3- 2.4703e-3- 3.1974e-3- 3.2386e-3- 5.2859e-3- 9.6222e-3- 2.4294e-3
MMF5 3.0584e-3- 2.3757e-3+ 5.9265e-3- 3.6278e-3- 3.7961e-3- 4.6401e-3- 2.7097e-3
MMF6 3.0544e-3- 2.3432e-3+ 5.6887e-3- 3.6755e-3- 3.5817e-3- 3.7254e-3- 2.6394e-3
MMF7 3.0462e-3= 2.5489e-3+ 3.5685e-3- 3.6054e-3- 2.8192e-3+ 4.0787e-3- 3.0635e-3
MMF8 4.6183e-3- 2.5795e-3- 1.152%e-2- 3.6255e-3- 1.5188e-2- 9.5289e-3- 2.5246e-3
MMF9 1.5678e-2- 9.9119e-3= 1.7142e-2- 1.4716e-2- 1.1171e-2- 7.3682e-2- 1.0254e-2
MMF10 1.6498e-1- 1.9425e-1- 1.8574e-1- 1.4825e-1- 4.2077e-2- 2.3221e-1- 1.9937e-2
MMF11 8.6626e-2- 9.3135e-2- 9.1792e-2- 8.6466e-2- 1.8396e-2+ 1.6853e-1- 2.0789e-2
MMF12 5.6760e-2- 8.2745e-2- 8.4736e-2 - 6.1752e-2- 7.8690e-3- 8.5102e-2- 3.8050e-3
MMF13 1.2529¢-1- 1.4251e-1- 1.413%e-1- 1.1087e-1- 4.3228e-2- 2.4991e-1- 3.5981e-2
MMF14 9.7823e-2- 6.9648e-2+ 8.0390e-2- 1.0625e-1- 1.0754e-1- 8.9598e-2- 7.3773e-2
MMF15 9.6821e-2- 7.2449e-2+ 8.7394e-2- 1.0096e-1- 1.2646e-1- 1.0083e-1- 7.9567e-2
MMF14_a 1.8897e-1- 1.8032e-1- 1.9443e-1- 1.9485e-1- 1.9526e-1- 2.0879e-1- 1.1905e-1
MMF15_a 1.9109e-1- 1.768%e-1- 1.913%-1- 1.9272e-1- 2.0116e-1- 1.9989%e-1- 1.4683e-1
MMF1_e 3.8652e-3- 2.7235e-3+ 1.1335e-1- 3.5982e-3- 4.5691e-3- 3.7295e-3- 2.8691e-3
MMF1_z 3.0877e-3- 2.3667e-3= 6.3742e-3- 3.7955e-3- 4.1645e-3- 3.8215e-3- 2.3938e-3
Omni_test 2.2388e-2- 7.6483e-3+ 1.2503e-2- 1.6396e-2- 4.3128e-2- 1.5085e-2- 9.4235e-3
SYM_PART_1 1.5727e-2- 9.3507e-3+ 2.6702e-2- 1.3311e-2- 2.6815e-2- 4.8660e-2- 1.0370e-2
SYM_PART_2 1.7551e-2- 1.0775e-2- 1.9383e-2- 1.2998e-2- 3.3515e-2- 4.0289¢-2- 9.9339e-3
SYM_PART_3 2.4128e-2- 1.1076e-2= 2.0962e-2- 1.4677e-2- 3.2889e-2- 8.4595e-2- 1.0821e-2
+/-/= 0/22/1 9/11/3 0/23/0 0/23/0 2/21/0 0/23/0

the diversity of decision space and objective space. For example,
DN-NSGA-II [1], Omni-Optimizer [2], MMOCLRPSO [3] and MO-
Ring-PSO-SCD [4]. However, the local PF is dominated by the global
PF in environment selection, resulting in the local PF being in a
relatively inferior rank after the ranking, and eventually eliminated.

2.1.2  Decomposition-based Approaches. These algorithms divide
the multi-objective multimodal problem into multiple sub-problems
and collaboratively optimize each sub-problem, which has a great
advantage in the diversity of the objective space. Such as MOEA/D-
AD [5], Tri-MOEA-TA&R [6].

Nevertheless, such algorithms take the non-dominated solutions
as the optimization goal in the optimization process, and the local PF
individuals is dominated by the non-dominated individuals, which
is often discarded during the iteration process.

2.1.3 Indicator-based approaches. These algorithms filter and
evolve by computing different metrics with good convergence and
diversity. For example, CPDEA [7] uses local convergence quality
rather than global convergence quality, and uses a convergence
density penalty strategy to make individuals uniformly distributed
in the decision space. Each individual of NIMMO [8] only compares
with its T nearby individuals in terms of fitness to remove the worst
individual, so that the individual found is the optimal individual in
the current local space. And the niching mechanism is added to the
decision space to improve the diversity of the decision space.
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3 PROPOSED ALGORITHM

This section describes in detail PC-MMOEA, an algorithm that
preserves the local PF and global PF of MMOPs and is able to obtain
population with good diversity and convergence.

3.1 Population clustering

To solve the problems mentioned above, the concept of main rank
is proposed. After the non-dominated sorting, if the individuals of a
certain rank exceed 20% of the individuals of the whole population,
then the rank is identified as an important rank, which is the main
rank. As for the other individuals, firstly, the non-dominated sorting
is carried out to divide the main rank, and for the individuals in
the non-main rank, they are divided into the nearest main rank
based on the distance between this individual and the individuals
in the main rank in the decision space, and their rank is replaced
with the rank of the main rank. According to this algorithm, all
the individuals in the population are classified into in main rank.
The specific operation is described in ALGORITHM 1, all distance
mentioned in this paper means Euclidean distance.

3.2 Improved density adjustment strategy

The problem of density unevenness is mentioned in the [9] and an
adaptive density adjustment strategy is presented to improve the
density inequality problem in the population. However, the strategy
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Table 2: Average IGDx values over 30 runs on CEC 2019 MMOPs, where the best mean is shown in a GRAY background

Problem MMOCLRPSO CPDEA MOEADAD MO_Ring_PSO_SCD NIMMO TriMOEATAR PC-

MMOEA
MMF1 4.7288e-2- 3.1882e-2- 6.7951e-2- 8.2035e-2- 5.7642e-2- 3.7416e-2- 3.0593e-2
MMF2 9.3179e-3- 4.8577e-3- 4.0192e-2- 3.5023e-2- 6.6257e-2- 4.2562e-2- 4.4720e-3
MMF3 1.0450e-2- 4.7804e-3- 4.0394e-2- 2.1384e-2- 6.2702e-2- 2.1731e-2- 4.6365e-3
MMF4 2.7319e-2- 1.8850e-2= 1.7698e-2+ 1.1044e-1- 4.5975e-2- 4.1148e-2- 1.8905e-2
MMF5 7.9662e-2- 5.9637e-2- 8.2187e-2- 1.6063e-1- 7.6405e-2- 8.9127e-2- 5.6945e-2
MMF6 7.1337e-2- 5.4627e-2 - 8.5396e-2- 1.3779e-1- 8.9233e-2- 7.5762e-2- 5.3543e-2
MMF7 2.2919e-2 - 1.8868e-2+ 2.9253e-2- 8.6272e-2- 1.7857e-2+ 2.3658e-2- 2.1198e-2
MMF8 5.9340e-2- 3.7454e-2- 1.6258e-1- 3.3891e-1- 1.8491e-1- 5.8583e-1- 3.6217e-2
MMF9 7.5911e-3- 6.3545e-3- 1.7530e-2- 2.1718e-2- 3.5223e-3+ 3.3446e-3+ 4.6938e-3
MMF10 1.6505e-1- 2.0092e-1- 1.8865e-1 - 1.7140e-1- 1.9306e-2- 2.0154e-1- 2.8913e-3
MMF11 2.0666e-1- 2.4894e-1- 2.3050e-1- 2.3976e-1- 5.1729e-3- 2.5251e-1- 4.8341e-3
MMF12 1.8992e-1- 2.4507e-1- 2.4545e-1- 2.3323e-1- 3.4752e-3- 2.4819e-1- 2.9921e-3
MMF13 2.4573e-1- 2.5297e-1- 2.7090e-1- 2.5438e-1- 1.445%-1- 2.6864e-1- 6.2046e-2
MMF14 6.8979¢-2- 4.6266e-2- 4.8750e-2- 8.9074e-2- 6.9036e-2- 3.6821e-2+ 4.5419e-2
MMF15 8.1617e-2- 6.2590e-2- 7.3557e-2- 1.112%e-1- 1.1915e-1- 7.0352e-2- 6.1743e-2
MMF14_a 1.7993e-1- 2.2467e-1 - 2.5748e-1- 2.2285e-1- 1.6470e-1- 2.7109e-1- 4.8361e-2
MMF15_a 1.9254e-1- 2.0522e-1- 2.1748e-1- 2.1422e-1- 2.1655e-1- 2.2254e-1- 7.5708e-2
MMF1_e 1.9145e-1- 1.3370e-1- 1.7604e+0- 5.7996e-1- 1.1225e+0- 1.9584e+0- 1.2393e-1
MMF1_z 3.4109e-2- 2.4728e-2- 5.3757e-2- 7.9509e-2- 3.7083e-2- 3.3524e-2- 2.1998e-2
Omni_test 1.8079e-1- 7.1986e-2- 1.1338e-1- 7.7717e-1- 4.0269e-1- 8.6840e-1- 5.5681e-2
SYM_PART_1 7.4228e-2- 3.1798e-2+ 3.2759%e-2+ 3.7198e-1 - 4.5976e-2= 2.8526e-2+ 4.4781e-2
SYM_PART_2 8.2497e-2- 5.7014e-2- 3.9099e-2+ 1.271%e-1- 6.5804e-2- 3.2246e+0- 4.6437e-2
SYM_PART_3 2.7884e-1- 4.7910e-2- 3.0342e-2+ 6.3692e-2- 2.1394e-1- 2.5928e+0- 3.7455e-2
+/-/= 0/23/0 2/20/1 4/19/0 0/23/0 2/20/1 3/20/0

Wilcoxon rank sum test at 0.05 significance level between PC-MMOEA and the compared MMOEA." -" indicates that PC-MMOEA

w,n

outperforms the compared algorithm, "+

comparable.

mentioned above takes no account of local PF and no information
about the individuals around the least dense individual is used
during the mutation process, moreover, random mutation will lead
to poor convergence of the population.

To address the issues proposed above, this paper makes the
following improvements: still finding the densest individual from
the whole decision space, but finding the least dense individual from
the main rank. Since main rank contains both local PF and global
PF, it can keep the diversity of the decision space while preserving
the local PF. And we use the information of the individuals around
the lowest density individual to perform the differential variation,
which impacts less on the convergence of the population compared
with the original strategy. The relevant operations are shown in
ALGORITHM 2, § is a random value between 1 and 10.

The following figure shows the comparison between density adap-
tive adjustment in [9] and the main Rank decision space density
self-adaptive strategy.

3.3 Overall algorithm

The algorithm proposed in this paper is organized mainly in two
steps.

37

indicates that the compared algorithm outperforms PC-MMOEA, and "=" indicates that there is no

Step I: convergence of populations and adjustment of decision
space diversity, the critical operations are as follows: 1: restrict the
selection process between itself and its offspring; 2: the calculation
of MED is restricted within the same Rank 3: density adjustment is
performed in the main rank.

Then, based on the result of population evolution in step I, the
population is clustered and the Rank is obtained, after which the
population is classified into one or more sub-populations according
to that Rank.

Step II: convergence population and adjustment of decision space
and objective space diversity; the key operations are as follows: 1:
limiting the selection process in its own subpopulation; 2: the MED
and MEDx computation is confirmed within the subpopulation. 3:
improved adaptive adjustment of density based on main rank.

In the problem with local PF and global PF, local PF is preserved
due to the fact that individuals located in local PF are not influenced
by the individuals in global PF, not only the population convergence
but decision space and objective space diversity are excellent as well.
The algorithm introduces the diversity adjustment strategies MED

and MEDx proposed in [9],(DCountl(Neth(i) )the number of in-

dividuals that dominate N ewP,(i), and the subscript / means that
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Algorithm 1 Population clustering

Input: Population
Output: New Population with new Rank
set all values in Rank = 0;
set temp = Population;
seti=0;
set R = the mutation distance of individuals in decision space;
while (i <= Populations’ size)and(temp’s size > 0)
Rank rest = NDSort (temp);
for(individuals in Rank rest=1j=1:n)
dist = the distance between individual( j ) and other
individuals in temp in decision space;
keep all individuals whose dist < R in circle;
if( size (individuals in circle whose Rank rest =
1))>(size(circle)*20%)
the Rank of all individuals in circle = i;
else
the Rank of all individuals in circle = 0;
end if
delete individuals in circle from temp;
i++;
end for
end while
for i = 1 : Max(Rank)
if(size(individuals whose Rank = i )>size(Population)*20%) or (i

= 1)
add Rank = i to main Rank
else
set All individual whose Rank = i to 0;
end if
end for

Population else = the individuals whose Rank = 0;
for individuals in Population else j=1:n
dist else = the distance between individual( j ) and individuals in
main Rank in decision space;
minld = get the cloest individual in main Rank;
Population else( j )= GaussMutation (main Rank (minId));
end for
end

all calculations are performed in the main Rank of the individual,
the overall framework of the algorithm is shown in ALGORITHM
3.

4 EXPERIMENTAL RESULTS

To verify the effectiveness of the proposed algorithm, PC-MMOES
will be in comparison with six State-of-the-art MMOEAs, including
MMOCLRPSO [3], CPDEA [7], MOEA/D-AD [5], MO-Ring-PSO-
SCD [4], NIMMO [8], and Tri-MOEA-TA&R [6]. The test problems
used is CEC 2019 MMOPs [10]. All the test data are carried out
on Platemo [11]. The number of population is set to 200 each run
has a total of 1000 generations. The DEMutation range used by
PC-MMOEA varies according to the size of the decision space, with
each dimension varying by 0.2 and -0.2 of the difference between
the maximum and minimum values of that dimension. The test
indicators, including IGD and IGDx, represent the convergence and
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Algorithm 2 Main Rank Decision Space Density Self-Adaptive
Strategy

Input: Population
Output: New Population with main rank decision density
self-adaptive
set Radius = The difference between the maximum and minimum
values of the decision space/d;
for individuals in population i=1:n
dist = the distance between individual ( i ) and other individuals in
Population;
Count[ i ] = the number of individuals whose dist <Radius;
end for
MaxId = the individuals with the largest value in Count;
non-dominated sorting and calculate main Rank;
Minld = the individuals with the minimum value of Count in main
Rank;
DistMaxId = the minimum distance between MaxId and other
individuals in population in decision space;
DistMinld = the minimum distance between Minld and other
individuals in population in decision space;
if Count[MaxId]/Count[Minld]>1.1 and DistMaxId/DisMinId >1
if exist the farthest individual within MinOne’s mutation range
MaxId=MinId+(0.5+0.5*rand)(individual-MinId)
else if exist the two or more individuals in the Minld’s rank
MaxOne= DEMutation (MinOne,individuall,individual2);
else if there no individuals in Minld’s rank
MaxId=GuassMutation (Minld);
end if
end if

diversity of the objective space and the decision space, respectively.
And the parameters in the compared state-of-the-art algorithm
is set as suggested in original paper. The following tables show
PC-MMOEA excellent performance. Out of 23 test problems, PC-
MMOEA obtained the optimal values from the IGDx values for 16
problems. Based on the values of IGD, PC-MMOEA obtained the
optimal values for 8 problems, and the performance of 2 of them
is the same as the optimal values. It can be seen from the pictures
below that PC-MMOEA is effective and efficient, not only can well
solve MMOPs with local PF and global PF but MMOPs with only
global PF.

5 CONCLUSION

A population clustering multimodal multi-objective evolutionary
algorithm for solving MMOPs is presented in this paper, which can
solve MMOPs with local PFs and global PFs well. The superiority
of the algorithm in this paper is proved by experiments in test
functions. Also developing evolutionary algorithms on large-scale
MMOPs will be the direction of our further research.
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Algorithm 3 Proposed PC-MMOEA Algorithm

Initialization P, , t =0
while(t< 1/2 maximum generation )//step I
NewP, = GaussMutation(P,)
calculate main Rank
fori=1:P )
if (NewP!" < p{?)
P = Newr?;
else if (t<1/4 maximum generation)
if (NewP!? £ Py and (P % NewP!")
if(DCountl(Neth(i)) < DCount; (P;i)))
P;i) = NewP[(i);
else if (DCount; (NewPﬁi)) = DCounty (P;i) )) and
MED,; (Newp(")
MED,;(P{")
P = Newr!?;
end if
end if
end if
end for
if (+<1/4 maximum generation)
main rank decision space density self-adaptive strategy ();
end if
end while
group = population clustering algorithm;
while (¢ < maximum generation)//step II
for k =1 : num(group)
subP, = P,(k);
fori: subPk ) )
NewsubP}l) = DEMutation(subPil));
if (Newsuth(i) < suth(i))
subPﬁi) = Newsuth(i)
else if (Newsuth(i) £ suth(i)) and (subP;i) 3 Newsuth(i))
if(DCount; (NewsubPii)) < DCountl(suth(i)))
subP;i) = NewsubP[(i);
else if (DCount; (NewsubPEi)) = DCountl(subPEi) ))
if (t<3/4 maximum generation)
" MED,;(NewsubP")
MED,(subP{))
suth(i) = NewsubP}i);
end if
else

if (

> 1;

MED;(NewsubP.")
MED (subP{")

MED,;(NewsubP!")

MED,;(subP{")

suth(i) = NewsubP}i);
end if
end if
end if

end if

end for

> 1and

end for
if (t<3/4 maximum generation)
main rank decision space density self-adaptive strategy ();
end if
end while

> 1)
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