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Abstract—In recent years, numerous efficient and effective 
multimodal multi-objective evolutionary algorithms (MMOEAs) 
have been developed to address multimodal multi-objective 
optimization problems (MMOPs) involving multiple equivalent 
sets of Pareto optimal solutions to be found simultaneously. 
However, the Pareto optimal solutions may have various 
contracting or expending shapes, and have random locations in 
the decision space. In addition, uniform decision distribution does 
not imply good objective distribution. Therefore, many existing 
MMOEAs are very difficult to guide the individuals converged to 
every Pareto subregion with good distribution in both the 
decision space and the objective space. In this paper, we present a 
multi-population evolutionary algorithm to search for the 
equivalent global Pareto optimal solutions. The original 
population should be divided into two groups of subpopulations 
with equal size. The first subpopulation is designed to search for 
the optimal solutions in objective space. At the same time. the 
second subpopulation focus to obtain high-quality optimal 
solutions in the decision space. The multi-population strategy is 
helpful to improve the decision and objective distributions 
simultaneously, and address the MMOPs effectively. The 
proposed algorithm is compared against five state-of-the-art 
MMOEAs. The experimental results indicate the proposed 
algorithm provides better performance than competing 
MMOEAs on IEEE CEC 2019 MMOPs test suite. 

Keywords—multimodal multi-objective optimization problem, 
multimodal multi-objective evolutionary algorithm, evolution 
strategy 

I. INTRODUCTION 
For the past few years, many multimodal multi-objective 

evolutionary algorithms (MMOEAs) have been developed to 
address multimodal multi-objective optimization problems 
(MMOPs) involving multiple equivalent sets of Pareto optimal 
solutions [1]-[3]. The mathematical model of the multi-
objective optimization problem (MOP) can be formulated as 
follows: min ( ) = min[ ( ), ( ), … ( ), … , ( )]             (1) 

where the decision vector x consists of N decision variables, = [ , , … , , … , ] ∊ .  denotes the decision space. The 

objective vector ( ) consists of M objective functions, ( ) ∊
, i=1, …, M.  denotes the objective space.  
For an MOPs, a group of non-dominated optimal solutions 

is called the Pareto optimal set (POS), and the corresponding 
objective vectors are called the Pareto optimal front (POF). 
Moreover, the MMOPs have more than one equivalent set of 
Pareto optimal solutions or at least more than one local Pareto 
optimal solution for any point on the Pareto front [4]. 
Therefore, it is quite different between MMOEAs from 
ordinary MOEAs. The MMOEAs need to satisfy three 
conditions simultaneously, (1) well-converged, (2) well-
distributed in the objective space, and (3) well-distributed in 
the decision space. 

In recent years, numerous MMOEAs have been designed for 
solving MMOPs. Some of them enhance the diversity of the 
decision space to find multimodal optimal solutions [5]-[10]. 
In contrast, some MMOEAs are based on decomposition 
techniques and integrate niching techniques in the decision 
space for searching more groups of Pareto optimal solutions 
[11]-[13]. Moreover, the performance indicators, such as 
hypervolume indicator, are also adopted in some MMOEAs to 
guide the evolutionary process [14]-[16]. 

In this paper, a novel multi-population evolution strategy 
algorithm is proposed for solving MMOPs, namely MP-
MMOES. The original population should be divided into two 
groups of subpopulations with equal size. The first 
subpopulation is designed to search for the optimal solutions in 
objective space that would satisfy conditions (1) and (2). At 
the same time, the second subpopulation focus to obtain high-
quality optimal solutions in the decision space, that need 
satisfy conditions (1) and (3). For this reason, the multi-
population strategy can meet three conditions simultaneously, 
and improve the decision and objective distributions 
effectively. 

The performance of the proposed algorithm is evaluated on 
twenty-three competition MMOP test instances in IEEE CEC 
2019 [17]. The proposed algorithm can address the MMOPs 
effectively, and achieve high-quality multiple groups of 
optimal solutions efficiently. The experimental results indicate 
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the proposed algorithm performs better than five competing 
state-of-the-art MMOEAs, including Omni-optimizer [5], 
MO_Ring_PSO_SCD [10], MOEA/D-AD [12], NIMMO [16] 
and TriMOEA-TA&R [9]. 

II. RELATED WORKS 
For the past few years, many MMOEAs have been designed 

for solving MMOPs with different strategies, including Pareto-
based approaches, decomposition-based approaches, and 
indicator-based approaches. 

A. Pareto-based MMOEAs  

The Pareto-based MMOEAs prefer the converged solutions 
with the Pareto dominance principle, and enhance the 
diversity of the decision space to find multimodal optimal 
solutions. In [5], the Omni-optimizer is presented to search 
for multiple equivalent Pareto optimal solutions by using 
crowding distances in both the decision and objective spaces. 
In [6], DNEA is proposed to maintain good distribution with 
sharing functions. In [7], DN-NSGA-II is designed to replace 
the crowding distance in the objective space with decision 
space. In [8], SPEA2+ adopt two archives to improve the 
performance of SPEA2, and the archives keep updating with 
density qualities.  

In [9], TriMOEA-TA&R is presented for multimodal 
multi-objective optimization, which adopts two-archive and 
recombination strategies. In [10], MO-Ring-PSO-SCD is 
designed to search for multiple Pareto subregions that 
integrated special crowding distance into multi-objective PSO 
algorithm. 

B. Decomposition-based MMOEAs 

The Decomposition-based MMOEAs usually decompose 
an MMOP into a number of single-objective optimization 
sub-problems, and uses a search heuristic to optimize these 
sub-problems simultaneously and cooperatively, such as 
MOEA/D [11]. In [12], MOEA/D-AD is proposed to 
integrate Addition and Deletion operators with dynamic 
population size. In [13], a decision space diversity 
maintenance mechanism is incorporated into MOEA/D for 
solving MMOPs. 

C. Indicator-based MMOEAs 

The indicator-based MMOEAs choose some performance 
indicators to guide the evolutionary process. In [14], the 
hypervolume indicator and Solow-Polasky diversity 
technique are adopted for solving MMOPs. In [15], the 
hypervolume indicator is also integrated to optimize the 
decision diversity. In [16], a novel niching indicator-based 
algorithm NIMMO is proposed to solve MMOPs. 

III. PROPOSED ALGORITHM 
In this paper, we present a multi-population based evolution 

strategy for solving MMOPs, named MP-MMOES. In the 

proposed algorithm, the whole population would be divided 
into two subpopulations. The first subpopulation is focused on 
searching for well-diversified optimal solutions in the 
objective space. The second subpopulation is designed to 
maintain diversity in the decision space. The multi-population 
technique is helpful to improve the objective and decision 
distributions simultaneously.  

Let ( )  be the ith individual in population Pt, which is 
divided into two subpopulations   and   randomly, as 
shown in Fig.1.  

 
For each generation, the proposed algorithm uses the 

Polynomial mutation to generate new candidate individuals. 
Let ( )  be the newly mutated candidate solution of 
individual ( ). If ( ) dominates ( ), it would replace the ( ) since ( ) has better convergent quality than  ( ). 

Let ( ( ))  be the function, which calculate the 
summation of other individuals that dominate ( ), as shown in 
Algorithm 1. 

 
Algorithm 1 DomCount ( ( )) 
Input: ( ) 
Output:  
1: = 0 
2: for k = 1 to P  
3:     if k = i then continue; 
4:     if ( ( ) ≺ ( )) then 
5:           = + 1 
6:     end if 
7: end for 
8: return  
 

f 2
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Fig. 1. The proposed algorithm adopts multi-population strategy to search for 
objective space and decision space independently. 
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If ( )  and ( )  are non-dominated with respect to each 

other, the values of their () would be compared. 
When the () of ( ) is smaller than that of ( ), 
the ( )  would replace the ( )  for less individuals can 
dominate ( ). When the value of  ( ( )) is 
equal to the value of ( ( )), the values of  or 

 would then be compared.  
If the ( ) ∈ , the MED [18]-[19] values ( ( ))  and ( ( )) are calculated. If ( ( )) is greater than ( ( )) , the ( )  would replace ( )  which implies the ( ) have better diversity quality than ( ).  ( ) = ( ) × ( )        (2) 

where ( ) = ∑ ∑ | ( ) − ( )|. ( ) = min, ∑ | ( ) − ( )|. 
On the other hand, if ( ) ∈ , the MEDx [20] values ( ( )) and ( ( )) are calculated. If ( ( )) 

is greater than ( ( )), the ( ) would replace ( ) which 
implies the mutated new candidate solution ( ) is superior 
to the original ( ) in decision space. ( ) = ( ) × ( )        (3) 

where ( ) = ∑ ∑ | ( ) − ( )|. ( ) = min, ∑ | ( ) − ( )|. 
The computational complexity of the MEDx is O(NP), 

where N is the number of decision variables and P is the 
population size. The pseudocode of the MEDx is given in 
Algorithm 2. 

 
Algorithm 2 MP-MMOES Algorithm 

1: Initialization Pt , t =0 
2: for i= 1 to P  
3:       if i mod 2 =0 then  = ∪ ( ) 
4:       else  = ∪ ( ) 
5: end for 
6: while ( t < maximum generation ) { 
7:      for i = 1 to P { 
8:          ( ) =  ( ( )) 
9:          Objective Functions Calculation ( ( )) 

10:          if ( ( ) ≺ ( )) { 
11:               ( ) = ( ) 
12:          else if ( ( ) ⊀ ( )) and ( ( ) ⊀ ( )) { 
13:               if ( ) < ( ) {  

14:                    ( ) = ( ) 
15:               else if ( ) = ( )  { 

16:                      if ( ( ) ∈  and 
( )( ) > 1) or  

17:                         ( ( ) ∈  and  
( )( ) > 1) {   

18:                            ( ) = ( ) 
19:                      } //end if 
20:               } //end if 
21:          } //end if 
22:     } //end for 

23: } //end while 

IV. EXPERIMENTAL RESULTS 
The proposed MP-MMOES is evaluated on twenty-three 

benchmark instances on IEEE CEC 2019 competition MMOPs 
[17], and the performances are compared with five state-of-
the-art MMOEAs, including MO_Ring_PSO_SCD [10], 
Omni-optimizer [5], MOEA/D-AD [12], NIMMO [16], and 
TriMOEA-TA&R [9]. In our experiment, the population size, 
P, is set to 200, while the maximum iteration is set to 300. The 
Polynomial mutation distribution index [21] is set to 20, In 
order to make a fair comparison, all the competing algorithms 
are run 30 times independently for each MMOP.  

In the comparison, two indicators IGD [22] and IGDx [23] 
are adopted to evaluate the performance of these competing 
algorithms. The smaller IGD or IGDx value means the 
obtained solutions have better diversity and convergence in the 
objective space or in the decision space respectively. = (∑| | ) /| |  , (4) = (∑| | ) /| |  , (5) 
where  of the IGD metric denotes the Euclidean distance 
between ith sampled reference objective vector and obtained 
nearest objective vector. Moreover,  of the IGDx metric 
denotes the Euclidean distance between the jth reference 
decision vector and obtained nearest decision variables. 

Table I lists the IGD values obtained using the six 
competing MMOEAs. The proposed MP-MMOES achieved 
significantly better IGD performance for sixteen MMOPs, 
which wins fifteen instances. Omni-optimizer also performed 
best on seven instances. NIMMO yielded the best results on 
one test instance. For Omni test instance, MMF2, MMF3, 
MMF4, MMF6, and MMF8 instances, MP-MMOES achieve 
better performance than other competing MMOEAs, except 
Omni-optimizer. For MMF9, NIMMO achieves the best 
performance, while MP-MMOES and Omni-optimizer are not 
far behind.   

Table II lists the IGDx values obtained by the competing 
MMOEAs. Compared with the other competing MMOEAs, 
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MP-MMOES achieved significantly better IGDx performance 
for thirteen MMOPs. For the remaining MMOPs, NIMMO 
performed best on four instances, MOEA/D-AD and 
TriMOEA-TA&R also win three instances, respectively. 
Although Omni-optimizer obtained the best IGDx values on 
SYM Part2, SYM Part3, and MMF4 instances, MP-MMOES 
also performed better than other MMOEAs. For MMF10, 
MMF11, and MMF12 instances, the proposed MP-MMOES 
achieved good IGDx values, just a little worse than NIMMO.  

As shown in Table I and Table II, MP-MMOES achieves 
the best performance on most of the IEEE CEC2019 MMOPs 
in both IGD and IGDx metrics. The experimental results prove 
that MP-MMOES can handle the MMOPs with various 
characterizes, including convex, concave, disconnected, and 
sphere Pareto fronts. In addition, these MMOP instances have 
2 to 27 Pareto subregions. The experimental results also 
demonstrate the ability to find multiple sets of well-distributed 
and well-converged optimal solutions in the decision space. 

 
 

TABLE I . AVERAGE IGD VALUES OVER 30 RUNS ON BENCHMARK INSTANCES (POPULATION SIZE 200), WHERE THE BEST MEAN IS SHOWN IN A GRAY 
BACKGROUND 

Problem MP-MMOES MO_Ring_PSO_SCD Omni-optimizer MOEA/D-AD NIMMO TriMOEA-TA&R 
OMNI TEST 0.01251123 0.029150124(+) 0.008958462( ) 0.012637087(=) 0.024598026(+) 0.015126827(+) 

SYM PART1 0.00897592 0.021807789(+) 0.009521222(+) 0.017766730(+) 0.034295248(+) 0.040351677(+) 
SYM PART2 0.01004566 0.022575431(+) 0.011739039(+) 0.017760622(+) 0.035765847(+) 0.030371377(+) 
SYM PART3 0.01116590 0.023256683(+) 0.012636299(+) 0.016262678(+) 0.048581612(+) 0.026949094(+) 

MMF1 0.00276004 0.005121772(+) 0.002815454(+) 0.006502579(+) 0.005040815(+) 0.003179426(+) 
MMF2 0.00537555 0.005361835(=) 0.003353320( ) 0.013881331(+) 0.011629751(+) 0.007202187(+) 
MMF3 0.00504986 0.005290680(+) 0.003214919( ) 0.017465270(+) 0.009359596(+) 0.005974700(+) 
MMF4 0.00272586 0.004610905(+) 0.002617184( ) 0.003136242(+) 0.005434900(+) 0.003330633(+) 
MMF5 0.00278193 0.005059484(+) 0.002819489(+) 0.005939438(+) 0.003843573(+) 0.003219364(+) 
MMF6 0.00275766 0.004336623(+) 0.002673216( ) 0.009208363(+) 0.004303962(+) 0.003129046(+) 
MMF7 0.00269708 0.004664684(+) 0.002812777(+) 0.003251445(+) 0.002749795(+) 0.003421886(+) 
MMF8 0.00351207 0.005222054(+) 0.003021578( ) 0.006653161(+) 0.013075597(+) 0.003671090(+) 
MMF9 0.01124202 0.032835218(+) 0.011532801(+) 0.014723816(+) 0.009595338( ) 0.072431150(+) 
MMF10 0.05685035 0.201809301(+) 0.196936485(+) 0.201469069(+) 0.203597691(+) 0.232581952(+) 
MMF11 0.07961368 0.111134791(+) 0.093753732(+) 0.096695782(+) 0.087955047(+) 0.168825871(+) 
MMF12 0.04027870 0.055809815(+) 0.082851825(+) 0.084465142(+) 0.091129024(+) 0.085663818(+) 
MMF13 0.07036060 0.140756921(+) 0.129059300(+) 0.151105279(+) 0.155633659(+) 0.243840159(+) 
MMF14 0.08174011 0.106392551(+) 0.087486389(+) 0.083680814(+) 0.108886753(+) 0.089755198(+) 

MMF14A 0.08460216 0.103348602(+) 0.089508155(+) 0.088885890(+) 0.126412248(+) 0.095896802(+) 
MMF15 0.17141854 0.191021894(+) 0.198716264(+) 0.185994005(+) 0.203966567(+) 0.209279524(+) 

MMF15A 0.17427857 0.186060373(+) 0.192931611(+) 0.192538464(+) 0.223188539(+) 0.200169061(+) 
MMF1Z 0.00260765 0.004394332(+) 0.002626091(+) 0.006512066(+) 0.004145604(+) 0.003240226(+) 
MMF1E 0.00632096 0.004837187( ) 0.003008280( ) 0.074925971(+) 0.004988975( ) 0.003952197( ) 

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MP-MMOES and compared MMOEAs. “+” means MP-MMOES better than 
compared algorithm, “ ” means compared algorithm better than MP-MMOES, “=“ means not comparable) 
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V. CONCLUSION 
In this paper, we propose a multi-population based 

evolutionary algorithm to solve MMOPs. The whole 
population is divided into two subpopulations in our algorithm. 
The first subpopulation is designed to find well-converged and 
well-distributed non-dominated optimal solutions in objective 
space. The second subpopulation is focused on searching for 
multiple groups of multimodal optimal solutions in decision 
space. In order to obtain good distributed optimal solutions, 
the MED and MEDx methods are adopted to maintain 
diversity in the objective space and the decision space, 
respectively. The performance of MP-MMOES is compared 
against five state-of-the-art MMOEAs, including 
MO_Ring_PSO_SCD, Omni-optimizer, MOEA/D-AD, 
NIMMO, and TriMOEA-TA&R. The experimental results 
demonstrate the proposed MP-MMOES provides competing 
performance than compared MMOEAs on twenty-three IEEE 
MMOPs in IGD, IGDx metrics. 
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