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Abstract— Multi-objective multi-point shortest path planning
problems are commonly encountered in real-world applications.
Numerous path planning algorithms have been proposed to
accommodate different model assumptions. However, most exist-
ing algorithms can only identify a subset of the Pareto optimal
paths and overlook equivalent Pareto optimal paths. Relying
solely on a subset of Pareto optimal solutions is insufficient
to effectively respond to unforeseeable road eventualities in the
real-world traffic environment. In this paper, multi-objective
multi-point shortest path planning problem is modeled as a
multimodal multi-objective optimization problem with necessary
points constrains. A multimodal multi-objective evolutionary
algorithm using constraint dominance principle-based path com-
parison strategy and path similarity-based multimodal solutions
selection strategy is proposed to address this problem. The
proposed constraint dominance principle-based path comparison
strategy can effectively navigate through large infeasible regions
by relaxing necessary point constraints, thereby obtaining a true
constrained Pareto front. The proposed path similarity-based
multimodal solutions selection strategy can effectively balance
the distribution of solutions in the decision space, thereby
preserving multiple equivalent optimal solutions. The proposed
algorithm is compared with five state-of-the-art path planning
algorithms from the benchmark test suite derived from the 2021
IEEE CEC path planning competition, where city maps are
adapted from real transportation networks in Chinese cities,
in our experiments. The exceptional performance is demonstrated
through thirty independent runs, yielding experimental results
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that showcase the superiority of the proposed algorithm on
the test problem set. This superior performance highlights the
potential for designing more resilient path planners suitable for
scenarios affected by unpredictable road eventualities.

Index Terms— Multi-objective shortest path planning, con-
strained multi-objective optimization, multimodal multi-objective
optimization, multi-objective evolutionary algorithm.

I. INTRODUCTION

MULTI-OBJECTIVE multi-point shortest path problem
aims to find a set of Pareto optimal paths to reach a

specified goal from a fixed start via several necessary points
and balance all objective functions, which are always conflict-
ing. In recent years, the multi-objective multi-point shortest
path problem has been extensively studied in logistics science
and transportation, examples of this type of problem include
multi-objective vehicle routing problems [1], multi-objective
travelling salesman problems [2], and multi-objective tourist
path planning problem [3]. Various path planning algorithms
have been proposed for different model assumptions [4]. Most
existing algorithms ignore the equivalent optimal paths with
the same objective function values and can only find part
of optimal paths. However, in many practical applications,
such as special operations, disaster rescues, and emergency
responses, it is necessary to obtain the optimal path plans
as many as possible to exclude the impact of temporary
or unavoidable factors such as traffic accidents, temporary
diversions, road construction, and road closures caused by
extreme harsh environments [5], [6], [7].

In applied mathematics, when the optimal solution in the
objective space corresponds to multiple different optimal deci-
sion vectors in the decision space, such problems are called
multimodal optimization problems [8], for example, indus-
trial design optimization problems [9], production scheduling
problems [10], feature selection problems [11], data mining
problems [12]. Fig. 1 shows a toy example of a multimodal
multi-objective multi-point shortest path planning (MMMSPP)
problem. The path length and the length of passing congestion
areas are the two objectives considered simultaneously. The
blue point represents the start, the green point signifies the
goal, the yellow point denotes the necessary point and the red
points indicate areas of congestion. In Fig. 1, there are two
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Fig. 1. Two equivalent optimal shortest paths, of the same length, traversing
necessary points and with the same length of congested areas.

optimal paths that pass through the necessary point, have
the same path lengths and pass through the same length of
congestion areas. Failure to identify diverse shortest paths
may prevent decision-makers from considering solutions that
satisfy their preferences. It is worth mentioning that these
two paths are equally important, and they pass through dif-
ferent intermediate points, which can bring diverse choices
to decision-makers with multiple preferences. Once one path
becomes unavailable due to unavoidable factors, decision-
makers can easily and quickly switch to another path.

The difficulty of the traditional multi-objective shortest path
problems is that as the number of objectives increases, the
dominant relationship between solutions becomes difficult to
compare, and the number of non-dominated solutions increases
exponentially, which increases the difficulty of the search.
Commonly used methods to solve multi-objective shortest
path problems include multi-objective A* algorithms [13],
[14], multi-objective Dijkstra algorithms [15], [16], and
multi-objective evolutionary algorithms (MOEAs) [17], [18].
On one hand, these algorithms focus on developing pruning
techniques to eliminate infeasible paths at the earliest stages
of the search process. On the other hand, they aim to improve
algorithmic search performance by enhancing solution gener-
ation mechanisms to obtain more explicit lower bounds.

However, the existing algorithms fail to effectively address
the MMMSPP problem due to the challenges posed by its mul-
timodal and multi-point nature. From the multi-point aspect,
most methods consider all necessary points as mandatory
conditions, giving rise to the following challenges. The first
challenge lies in the diversity aspect. The presence of a large
and infeasible region poses difficulties in exploring certain
fronts. Secondly, there is a feasibility challenge. Either an
extremely small feasible region hinders effective search or
an excessively large infeasible region obstructs the search
direction, leading to local optima. Finally, there is a conver-
gence challenge. Constraints impede algorithmic convergence,
making it arduous to achieve the minimization objective during
the evolutionary process. From the multimodal aspect, most
existing methods can only identify one Pareto front (PF) and
lack the capability to preserve Pareto optimal solution set (PS)
with multiple equivalent optimal solutions. This limitation
stems from two main factors. Firstly, the absence of an
effective search mechanism leads to algorithm convergence
on a partial, resulting in the omission of optimal solutions.

Secondly, insufficient consideration is given to the distribution
of solutions in the decision space. This leads to missed
opportunities for potential solutions with limited dispersion in
the objective space but significant separation in the decision
space.

To effectively address the MMMSPP problems, this paper
proposes a MOEA namely MMOEA-CDP for path search
in the context of multimodal multi-objective multi-point path
planning. To address the challenges posed by multi-point
aspect, a constraint dominance principle (CDP) based path
comparison strategy is proposed. Each necessary point is
treated as a separate constraint, and the extent to which the
candidate solution satisfies these constraints is considered as a
criterion for assessing the quality of the solution. By relaxing
the constraints, the algorithm can pass through a large area of
infeasibility and reach the true constrained Pareto front (CPF).
To effectively tackle the complexities inherent in multimodal
aspect, a multimodal solution selection strategy grounded
in path similarity is proposed. Abandoning the approach of
preserving diversity in objective space employed by most
algorithms, this strategy maintains the diversity of candidate
solutions within the decision space through a selection method
grounded in path similarity. This enables the algorithm to
retain multiple equivalent optimal solutions.

Given the above, the main contributions can be encapsulated
as follows.
• The multi-objective multi-point shortest path planning

problem is formulated as a constrained multimodal opti-
mization problem. In the proposed problem, the necessary
points are represented as constraints. The goal of the
problem is to find all equivalent Pareto optimal solutions
that minimize each objective and pass through all neces-
sary points.

• A CDP-based path comparison strategy is proposed which
regards the number of necessary points as a criterion
for evaluating the quality of a candidate path, thereby
relaxing the constraints.

• A path similarity-based multimodal solution selection
strategy is proposed that identifies solutions with superior
diversity within the decision space to preserve multiple
Pareto optimal solutions.

The subsequent sections of this paper are structured as
follows: Section II provides a concise overview of the relevant
research literature. Section III presents the theoretical prob-
lem statement, while Section IV elaborates on the proposed
algorithm. The experimental setup is explained in Section V.
In Section VI, we present the experimental results obtained
from our study, and finally, in Section VII, we provide a
comprehensive conclusion.

II. RELATED WORK

In this section, we will initially present some exist-
ing research on multi-objective shortest path planning in
Section II-A. Subsequently, we will review the current
literature on multimodal multi-objective optimization in
Section II-B. Finally, we give the motivation of this work in
Section II-C.
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A. Multi-Objective Shortest Path Planning

The algorithms for solving multi-objective multi-point
shortest path planning problems can be classified into two
categories, exact algorithms and heuristic algorithms. The clas-
sical exact algorithms encompass the multi-objective Dijkstra
algorithm and the multi-objective A* algorithm. Hansen [19]
initially extended the Dijkstra algorithm [20] to address the
bi-objective shortest path problem, and Martins [21] further
expanded upon this approach for the multi-objective scenario.
When the problem specifies the goal, the A* algorithm [22]
can estimate the proximity between a given node and the goal
through heuristic information to improve the search efficiency.
Stewart and White [23] outlined the first multi-objective
extension of A* namely MOA*. Based on these results,
an increasing number of multi-objective A* algorithms have
been proposed. The categorization of multi-objective A* algo-
rithms can be classified into two distinct approaches: node
expansion and label expansion. Node expansion-based algo-
rithms extend the node expansion policy of classic MOA*
to different contexts, like algorithms MOA** for search with
non-consistent lower bounds [24], BCA* for compromise
solutions [25], or METAL-A* for goal-based preferences [26].
The classic label expansion-based algorithm is NAMOA* [27].
Recent attempts to improve this algorithm include parallel
search [28] and the dimensionality reduction technique [29].

However, the time complexity of the exact algorithm
increases significantly for solving large-scale multi-objective
shortest path planning problems, leading to a continuous
decline in its performance. Consequently, heuristic algorithms
have garnered increasing attention [58], [59], [60], [61].
When it comes to multi-objective path planning, classical
heuristic algorithms commonly employed for addressing this
category of problems primarily include genetic algorithms,
ant colony optimization, variable neighborhood search, and
greedy randomized adaptive search [62], [63], [64], [65].
Genetic algorithm-based heuristics enhance the classic NSGA-
II [30] by denoising autoencoder [31], clustering [32], and
local search [33]. Ant colony algorithms [34] simulate the
pathfinding behavior of ants and selects the optimal path
according to the pheromone concentration. Recent improve-
ment attempts include multiple mutation operator [35] and
greedy search [36]. Variable neighborhood search [51] and
greedy randomized adaptive search [52] are widely used in
path planning for uncrewed aerial vehicles and robotics.

B. Multimodal Multi-Objective Optimization

Multimodal optimization refers to optimization problems
where there are multiple equally optimal solutions, each cor-
responding to a distinct decision vector in the decision space.
In traditional multi-objective optimization, the primary focus
is on finding the PF, which consists of solutions that cannot be
improved in any objective without worsening others. However,
in multimodal multi-objective optimization, the goal is not
only to identify the PF but also to ensure that all the equally
optimal solutions are discovered and retained, despite their
possible differences in the decision space. A key challenge
in multimodal multi-objective optimization is maintaining

decision space diversity, as traditional methods like crowding
distance or dominance-based selection often prioritize objec-
tive space diversity [37]. Consequently, traditional MOEAs
may overlook or lose equivalent optimal solutions when
addressing multimodal multi-objective problems [11].

In recent years, many multimodal multi-objective evolu-
tionary algorithms (MMEAs) with different mechanisms have
been proposed for solving multimodal multi-objective opti-
mization problems [53]. Omni-optimizer [37], one of the most
representative MMEAs, introduces an alternative crowding
distance to preserve solution diversity in both the objective
and decision spaces. DNEA [38] and DN-NSGAII [39] build
on Omni-optimizer by incorporating dual niche and deci-
sion space-based niching strategies, respectively, to enhance
diversity preservation. DNPD [40] integrates decision space
information into Pareto dominance, employing dynamic niches
to retain well-distributed solutions. APHMA [41] combines
hierarchical environmental selection with affinity propagation
clustering to eliminate similar solutions in the decision space
while preserving diverse PSs. ArchiveUpdateLQ [55] identifies
-locally optimal solutions to enable comprehensive explo-
ration of the decision space. BOEA [56] redefines multimodal
optimization as a bi-objective problem, explicitly separating
convergence and diversity objectives, with hierarchical clus-
tering enhancing diversity preservation. Lastly, ClusteringGA
[57] adopts a clustering-based niching method with affinity
propagation clustering to identify diverse PSs.

To the best of our knowledge, despite the extensive
empirical evidence supporting the effectiveness of the afore-
mentioned MMEAs in addressing multimodal multi-objective
problems involving real numbers, there is a paucity of research
focusing on discrete problem domains [54]. Real-valued opti-
mization problems can be very different from discrete ones for
MOEAs to deal with. MOEAs which work well on real-valued
problems can easily get stuck in discrete search space, even
in very different places in every execution [50]. The primary
reason that MMEAs have rarely been studied in discrete
problem domain may lie in the necessity for them to conduct
selection operations based on the distance between candi-
date solutions in the decision space. For the multi-objective
shortest path problems, scholars have made the following
attempts. In terms of enhancing diversity in the decision space,
MMEAs enhance the classic NSGA-II through distinct strate-
gies, such as MMEA-SES [42], which incorporates improved
environmental selection, and MACOSX [43], which utilizes
a topological map. From the perspective of enhancing search
capabilities, MDACO [44] introduces an enhanced ant colony
optimization algorithm as the evolutionary operator.

C. Motivation

The MMMSPP exhibits the characteristics of being multi-
objective, multi-constraint, and multimodal. From the multi-
objective perspective, as the number of objective functions
increases, so does the number of non-dominated solu-
tions. However, this also leads to dominated impedance
and exponentially increased problem difficulty. The conven-
tional algorithm employed for solving multi-objective shortest
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Fig. 2. Illustration of a dual-objective MMMSPP with two necessary points.
(a) The objective space of the MMMSPP with a dual-objective and two
necessary points. (b)-(e) The corresponding solutions in the objective space.

path planning problems utilizes the objective weighted sum
approach. The proposed approach encounters several limita-
tions. Firstly, determining an appropriate weight assignment
for conflicting objective functions is challenging. Secondly,
a singular model of weight assignment fails to encompass
non-continuous PF or those with complex shapes. Lastly, the
weight sum approach tends to prioritize solutions within the
convex hull and overlooks Pareto optimal solutions in non-
convex regions [4].

From the perspective of multi-constraint nature, balancing
convergence and constraint satisfaction is the primary diffi-
culty in solving the MMMSPP. The objective space of the
MMMSPP with a dual-objective and two necessary points is
illustrated in Fig. 2 (a), where the two minimization objectives
are the length and the crowding degree of the path. The
white region represents the infeasible region caused by the
necessary point constraint, and the cyan points depict the true
CPF. When the necessary point constraints are eliminated from
the problem, the optimal solutions are located on the red
unconstrained Pareto front (UPF) as shown in Fig. 2 (b). When
the problem is reduced to a single necessary point constraint,
the optimal solutions are located on the reduction-constrained
PF (RCPF) represented by blue and green colors. Most of the
current heuristic algorithms for solving multi-objective short-
est path planning problems [31], [32], [33], [34], [35], [36]
emphasize convergence and ignore feasibility. The population
is easy to converge to the UPF, obtaining feasible solutions
that satisfy necessary points constraints remains challenging.
Most of the existing exact algorithms [24], [25], [26], [27],
[28], [29] tend to prioritize feasibility excessively, hindering
the population from traversing a vast infeasible region and con-
verging towards the local optimum. Nevertheless, infeasible
solutions possess inherent value. As illustrated in Fig. 2 (c) and

Fig. 3. Illustration of decision space and objective space of a dual-objective
MMMSPP. Due to the negligible distance between point B and point A, point
B will be eliminated in the objective space, so path3 cannot become path2
by simply mutating.

(d), solutions that satisfy a single necessary point constraint
also hold the potential to transform into solutions on CPF,
as depicted in Fig. 2 (e), with minor adjustments. Inspired
by this, in this paper, a CDP-based path comparison strategy
is proposed to relax the constraint. The number of satisfied
necessary points is considered as the constraint satisfaction
degree, enabling the population to traverse the extensive infea-
sible region while retaining infeasible solutions with potential
advantages, such as those on RCPF. Both convergence and
feasibility are comprehensively addressed.

From the perspective of multimodality, the difficulty of
the MMMSPP problem is preserving different paths with the
same objective value. Fig. 3 shows the decision space and
the objective space of a bi-objective MMMSPP. The decision
space perspective reveals that Path1 and Path2 exhibit distinct
dissimilarities. However, they share identical objective values
and both correspond to point A in the objective space. Path3
exhibits numerous overlapping passing points with Path2, and
its objective function values correspond to point B in the
objective space. Assuming that the algorithm has acquired
Path1 and Path3, it is observed that only a small amount
of transition is required for Path3 to transform into Path2.
In the objective space, points A and B exhibit excessive
proximity, leading to the exclusion of point B by conventional
multi-objective optimization algorithms [30], [31], [32], [33],
[34], [35], [36]. However, to retain both Path1 and Path2,
it is imperative not to eliminate Path3. Therefore, to ensure
the algorithm’s capability in preserving multiple equivalent
optimal solutions, this paper proposes a multimodal solution
selection strategy based on path similarity. The proposed strat-
egy introduces a path similarity index to assess the diversity
of individuals within the decision space and selectively retain
optimal solutions that exhibit superior diversity.

III. PROBLEM FORMULATION

Constrained multi-objective optimization is concerned with
the optimization of multiple objective criteria simultaneously
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while satisfying constraints, it can be expressed as
follow:

min
x∈�

/ max f⃗ (
−→x )

= min / max
(

f1(
−→x ), f2(

−→x ), f3(
−→x ), . . . , fM (

−→x )
)T

s.t.
{

gs(
−→x ) ≤ 0, s = 1, . . . , S

ht (
−→x ) = 0, t = 1, . . . , T

(1)

where −→x = (x1, x2, x3, . . . , xD) ∈ � expresses the decision
vector with D decision variables xi , i = 1, . . . , D within the
decision space �. f⃗ (

−→x ) ∈ RM is the objective vector with
M objective functions to be minimized/maximized and RM

indicates the objective space. In addition, the optimal solutions
need to satisfy S inequality constraints and T equality con-
straints. gs(

−→x ) is the function of the s-th inequality constraint,
and ht (

−→x ) is the function of the t-th equality constraint.
Due to conflicting objective functions, it is infeasible to
seek a singular optimal solution that satisfies all objectives.
The following definitions are well-established in the field
of multi-objective optimization and are widely utilized for
formalizing optimization problems in this domain.

Pareto dominance: Given two solutions −→x = (x1, x2, x3,
. . . , xD) ∈ � and −→y = (y1, y2, y3, . . . , yD) ∈ �, −→x ≺ −→y ,
if and only if the following conditions are satisfied.
−→x ≺ −→y iff:
∀m ∈ {1, . . . , M}, and ∃ j ∈ {1, . . . , M}{
fm(
−→x ) ≤ fm(

−→y ), f j (
−→x ) < f j (

−→y ) if min f⃗ (
−→x )

fm(
−→x ) ≥ fm(

−→y ), f j (
−→x ) > f j (

−→y ) if max f⃗ (
−→x )

(2)

Pareto optimal solution: For a solution
−→
x∗ , if ∄−→x such

that −→x ≺
−→
x∗ , then

−→
x∗ is termed a Pareto optimal solution.

Equivalent Pareto optimal solutions: For two Pareto
optimal solutions

−→
x∗1 ̸=

−→
x∗2 , if f⃗ (

−→
x∗1 ) = f⃗ (

−→
x∗2 ), then they

are equivalent Pareto optimal solutions to each other.
Multimodal multi-objective optimization problem: For a

multi-objective optimization problem in equation (1), if there
exist equivalent Pareto optimal solutions of interest, then
it is regarded as a multimodal multi-objective optimization
problem.

Pareto optimal solution set: Subject to satisfying con-
straints, the set of all Pareto optimal solutions is the Pareto
optimal solution set.

Constrained Pareto front: The corresponding projection
of Pareto optimal solution set in the objective function space
is known as the constrained Pareto front.

Unconstrained Pareto front: If we deliberately disregard
the problem’s constraints, the mapping of the fake optimal
solution set obtained in the objective space is referred to as
an unconstrained Pareto front.

Given the start, goal, necessary vertices set, and congestion
vertices set, the purpose of the multimodal multi-objective
multi-point shortest path planning problem is to find all the
Pareto optimal solutions of the optimal shortest routes from
the start to the end while passing through all necessary points.
The definition and detailed description of the MMMSPP are
provided below.

TABLE I
FREQUENTLY USED NOTATIONS

Graph representation: Let G = (V, E) denote a finite
undirected graph with |V | vertices and |E | edges. Every edge
e =

(
vi , v j

)
∈ E starts at vi ∈ V and ends at v j ∈ V . N E ⊆ V

denotes the necessary vertices set, while C O ⊆ V represents
the congestion vertices set.

Path representation: Let v1 represents the start, vl repre-
sents the goal, and π (v1, vl) = {v1, v2, . . . , vl−1, vl} denotes
a path that consists of a list of vertices with each pair of
adjacent vertices vk, vk+1, k ∈ {1, 2, . . . , l − 1} connected by
an edge (vk, vk+1) ∈ E . A path can also be represented by its
compound edges π (v1, vl) = {e1, e2, ., el−1}, where it holds
∀k ∈ {1, . . . , l − 1} : ek = (vk, vk+1) ∈ E .

Objective functions: For a given path π (v1, vl), the total
degree of congestion objective values when moving from v1 to
vl along π is expressed as:

−→
f d (π (v1, vl)) =

∑k=l
k=1
−→
f d (vk),

where an objective vector
−→
f d (vk) ∈ RM , vk ∈ V represents

the degree of congestion passing through the vertex vk from
all directions. Additionally, the number of intersection points
along the path is denoted as f i (π (v1, vl)) and the length of
the path is represented by f l (π (v1, vl)) =

∑k=l−1
k=1 f l (ek).

Finally, the number of congestion vertices in the path
is expressed as f c (π (v1, vl)) =

∑k=l
k=1 es (vk, C O) , k ∈

{1, 2, . . . , l}, where es (vk, C O) is a a binary function indi-
cating whether a vertex vk belongs to the congestion set C O ,
ie., es (vk) = 1 if vk ∈ C O and es (vk) = 0 otherwise.

Constraints: A path π (v1, vl) is considered feasible if
it passes through all necessary vertices in the set N E . The
required point is treated as an equality constraint, ensuring
that each required point is included in the path. This can be
expressed as: h (π (v1, vl)) : |N E |−

∑k=|N E |
k=1 es (nek, π) =

0. Here, es (nek, π) is the existence function ensuring that
each required point in N E is visited by the path π .

IV. PROPOSED ALGORITHM

In this section, the framework of the proposed
MMOEA-CDP is initially presented in Section IV-A.
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Algorithm 1 Framework of the Proposed MMOEA-CDP
Input: Gen (Maximum number of generations), N

(Population size), Z (Map for path planning)
Output: OP (Optimal paths)

1 [V, E] ← Graph Preprocessing(Z)

2 P ← Initialization(V, E, N )

3 while termination criterion not fulfilled do
4 Q ← Recombination(P)

5 [P, CPF] ←
Path similarity-based multimodal selection(P ∪ Q)

6 [P, CPF] ←
Path similarity-based multimodal selection(P)

7 O P ← CPF

Subsequently, the graph preprocessing is explained in
Section IV-B, while the initialization and recombination of the
population are described in Section IV-C. Next, we elaborate
on the constraint dominance principle-based path comparison
strategy and path similarity-based multimodal solutions
selection in Section IV-D and Section IV-E respectively,
which constitute the key component of MMOEA-CDP.
Finally, The time complexity of the proposed algorithm is
analyzed in Section IV-F. Table I summarizes the frequently
used notations.

A. Framework of the Proposed MMOEA-CDP

The overall framework of MMOEA-CDP is illustrated
in Algorithm 1. Firstly, the graph preprocessing method is
employed to model the problem’s map in line 1, effectively
reducing the encoding length of paths while preserving essen-
tial map information. Subsequently, population initialization
and solution evaluation are conducted in line 2. As long as
the current generation is less than the maximum evolutionary
generation, crossover and mutation operations are applied to
parent population P in order to generate offspring population
Q in line 4. Afterwards, a path similarity-based multimodal
solutions selection process is performed on the merged pop-
ulation consisting of both parent and offspring populations,
resulting in a new population for the subsequent generation
in line 5. Finally, upon completion of iterations, the CPF of
the final population is returned as an optimal set of paths in
line 7.

B. Graph Preprocessing

The encoding methodology employed in evolutionary algo-
rithms plays a pivotal role. A well-designed encoding scheme
can effectively streamline problem complexity and expedite
the solving process. For path planning problems, it is not
necessary to consider all areas on the map. In the case of a
complex and large-scale map, simplification can be achieved
by representing the dot matrix chart as an equivalent reduction
graph. This approach effectively reduces the encoding length
of individuals in evolutionary algorithms without disregarding
important map information. Establishing of an equivalent
reduction graph requires constructing distinctive marks, reduc-
tion vertices set, and reduction edges set.

Fig. 4. Illustration of the determination of reduction vertex.

1) Constructing Distinctive Marks: The initial step in con-
structing the reduction graph involves establishing distinct
marks. These marks encompass essential information such
as the start, goal, necessary points, and areas of congestion
within the original city map that are crucial for path planning.
Let Zi, j,i∈{{1,2,...,Z |}, j∈{{1,2...,|Zi |} denote the point located at
abscissa i and ordinate j on the city map Z . NE∪

{
Zi, j

}
, if Zi, j

is a necessary point, and CO ∪
{

Zi, j
}
, ifZi, j is a congestion

point.
2) Building Reduction Vertices: The second step in con-

structing the reduction graph is to build reduction vertices.
Intersections entail waiting for traffic lights and congestion
resulting from vehicle lane selection, making the number of
intersections a key optimization objective in the MMMSPP
problem. While two adjacent intersections can determine an
edge, this paper utilizes potential intersections from the origi-
nal city map as reduction vertices. This allows for the omission
of intermediate nodes along this edge in the original map,
thereby reducing the decision space and complexity of the
problem. Let Zi, j = T rue if Zi, j is passable else Zi, j =

False. For the construction of vertices set, V ∪
{

Zi, j
}
⇔

Zi, j ∧
(
Zi−1, j∨ Zi+1, j

)
∧

(
Zi, j−1 ∨ Zi, j+1

)
. The formula

above requires that Zi, j be passable, and there must be at
least one passable point adjacent in both the vertical (up or
down) and horizontal (left or right) directions. Fig. 4 illustrates
the determination of reduction vertex.

3) Constructing the Reduction Edges: The third step in
constructing a reduction graph involves the creation of a set
of reduction edges. The pseudo-code for this procedure is
shown in Algorithm 2. Firstly, traverse each vertex v in the
union of V and NE. Subsequently, it systematically explores
the left, right, upward, and downward directions to identify
the closest neighboring vertex within the coordinate system
established by map Z. This process facilitates the construction
of an edge e

(
v, Zi, j

)
. The objective value of the edge is then

determined as the summation of the objective values assigned
to each point along the edge. Finally, the incorporation of
e
(
v, Zi, j

)
into the set E is executed. The construction of

reduction edges is illustrated in Fig. 5, where the gray regions
represent passable areas, while the blue point indicate the start
location, green point denote the goal location, yellow points
signify necessary points, red points represent congestion areas,
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Algorithm 2 Construction of the Reduction Edges
Input: V (Reduction vertices), NE (Necessary vertices),

Z (Map for path planning)
Output: E (Reduction edges)

1 E← ∅
2 for v in V ∪ N E do
3 for dir in {right, left, up, down} do
4 if dir = right then
5 i ← v.xaxis + 1, j ← v.yaxis

6 else if dir = left then
7 i ← v.xaxis − 1, j ← v.yaxis

8 else if dir = up then
9 i ← v.xaxis, j ← v.yaxis + 1

10 else
11 i ← v.xaxis, j ← v.yaxis − 1

12 cons ← 0,
−−→temp←

−→
0

13 while Zi, j = True do
14

−−→temp←−−→temp +
−→
f d

(
Zi, j

)
15 if Zi, j ∈ C O then
16 cons ← cons + 1

17 if Zi, j ∈ V then
18

−→
f d

(
e
(
v, Zi, j

))
←
−−→temp

19 if dir = right then
20 f l

(
e
(
v, Zi, j

))
← i − v.xaxis

21 else if dir = left then
22 f l

(
e
(
v, Zi, j

))
← v.xaxis − i

23 else if dir = up then
24 f l

(
e
(
v, Zi, j

))
← j − v.yaxis

25 else
26 f l

(
e
(
v, Zi, j

))
← v.yaxis − j

27 f c
(
e
(
v, Zi, j

))
← cons

28 E ← E ∪ {e
(
v, Zi, j

)
}

29 break

30 if dir = right then i ← i + 1
31 else if dir = left then i ← i − 1
32 else if dir = up then j ← j + 1
33 else j ← j − 1

black points indicate the reduction vertices, and the black lines
with arrows denote the reduction edges corresponding to the
vertex vi .

C. Initialization and Recombination of the Population

1) Initialization of the Population: The initialization of the
initial population is demonstrated in Algorithm 3. Firstly, for
each new path π , its first vertex is designated as the start
location in line 3. Then, until the last vertex v|π | in the path
π reaches the goal location, the next edge is selected from
reduction edges set E as the one where its source is v|π | and

Fig. 5. Illustration of the construction of reduction edges.

Algorithm 3 Initialization of the Population
Input: V (Reduction vertices), E (Reduction edges), N

(Population size)
Output: P (Initial population)

1 P ← ∅
2 while |P| ≤ N do
3 π ← ∅, v1 ← start, π ← π ∪ {v1}

4 while v|π | ∈ π ̸= goal do
5 if ∃e ∈ E : e (va, vb) ∧ va = v|π | ∧ vb /∈ π then
6 π ← π ∪ {vb}, v|π ′c|← vb

7 else
8 break

9 if v|π | ̸= goal then
10 continue
11 Calculate the objective functions of π

12 P ← P ∪ π

destination does not appear in path π as shown from line 4
to line 10. Finally, the objective function values of π are
ultimately computed in line 11 and subsequently integrated
into the population P in line 12.

2) Recombination of the Population: In the field of evo-
lutionary computation, recombination operations, such as
crossover and mutation, play an indispensable role in generat-
ing offspring and enhancing search efficiency. The crossover
operator enables exceptional individuals to transmit their
superior genes to their progeny, while the mutation oper-
ator facilitates the generation of gene fragments absent in
the current population, thereby enabling the algorithm to
escape local optima. The pseudo-code for the recombination
of the population is shown in Algorithm 4. The frequency
of crossover and mutation operations is controlled by the
probability parameters Pc and Pm, where Pc is set to 0.7 and
Pm is set to 0.3. Specifically, the crossover operator employs
single-point crossover. Firstly, the junctions are identified in
paths πa and πb with distinct antecedence vertices in line 5.
Then the vertices in πa and πb from the junctions to the
goal location are exchanged to generate two new individuals

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Wuhan University of Science and Technology. Downloaded on May 14,2025 at 04:43:41 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Algorithm 4 Recombination of the Population
Input: P (Parent population)
Output: Q (Offspring population)

1 Q ← ∅
2 while |Q| ≤ N do

/* Crossover */
3 if rand < Pc then
4 T empV ← ∅, π ′a ← ∅, π ′b ← ∅

πa, πb ← Randomly select two paths from P
5 T empV ← {vk∈1,2,..,|πb||vk ∈ πa ∩ πb, vk−1 ∈

πb \ πa}

6 for v in T empV do
7 j ← index(v, πa)

8 π ′a ← {vi |i ≤ j} ∈ πa ∪ {vi |i > k} ∈ πb
9 π ′b ← {vi |i ≤ k} ∈ πb ∪ {vi |i > j} ∈ πa

10 Calculate the objective functions of π ′a and π ′b
11 Q ← Q ∪ π ′a ∪ π ′b

/* Mutation */
12 if rand < Pm then
13 for dir in {backward, forward} do
14 πc ← Randomly select one path from P
15 π ′c ← ∅, aim ← ∅
16 if dir = backward then
17 vr∈[1,|πc|−2]← Randomly select from πc
18 π ′c ← {vi |i ≤ r} ∈ πc
19 aim ← goal

20 else
21 vr∈[3,|πc|]← Randomly select from πc
22 π ′c ← {vi |i ≥ r} ∈ πc, π ′c ← reverse(π ′c)
23 aim ← start

24 while v|π ′c| ∈ π ′c ̸= aim do
25 if

∃e ∈ E : e(va, vb) ∧ va = v|π ′c| ∧ vb /∈ π ′c
then

26 π ′c ← π ′c ∪ {vb}, v|π ′c|← vb

27 else
28 break

29 if v|π ′c| ̸= aim then
30 continue
31 if dir = forward then
32 π ′c ← reverse(π ′c)

33 Calculate the objective functions of π ′c
34 Q ← Q ∪ π ′c

π ′a and π ′b in line 8 and 9. The mutation operator adopts a
multi-point segmentation mutation, including backward and
forward modes. Firstly, for a given path πc, randomly select
a non-start or non-goal vertex vr as the mutation vertex as
shown in line 17 and 21. Then, the backward mutation will
reconstruct the path from vertex vr to the goal location, while
the forward mutation will reconstruct the path from vertex vr
to the start location.

D. Constraint Dominance Principle-Based Path Comparison
Strategy

In MMMSPP, necessary points are typically treated as
critical constraints that must be satisfied. Current algo-
rithms commonly adopt two main approaches to handling the
necessary point constraint: strict constraint satisfaction and
segmented optimization. Strict constraint satisfaction considers
any candidate path that fails to meet the necessary point
constraint as an infeasible solution, which is then directly
eliminated from the solution set. While straightforward, this
method is overly rigid and may overlook potentially optimal
solutions that partially satisfy the necessary point constraint.
As a result, this strategy restricts the algorithm’s ability
to explore infeasible regions and converge towards the true
CPF. Segmented optimization treats necessary points as break-
points, dividing the problem into multiple sub-paths. Each
sub-path is calculated independently as a shortest path, and
the final solution is obtained by concatenating these sub-paths.
However, this method has notable limitations in multimodal
multi-objective optimization. First, it often leads to a loss of
global optimality, as the independent computation of sub-paths
focuses on local optima, neglecting the overall optimality of
the full path. Second, it struggles to maintain solution diversity,
typically producing a single optimal path and failing to capture
multiple equivalent solutions in multimodal scenarios.

To address the limitations of conventional methods in han-
dling the necessary point constraint, propose the CDP-based
path comparison strategy is proposed. This strategy introduces
a relaxation mechanism into the traditional principle of dom-
inance that permits the inclusion of infeasible solutions by
evaluating their quality based on the number of necessary
points traversed. Unlike conventional approaches that rigidly
eliminate infeasible paths, CDP leverages this relaxation to
maintain a balance between solution feasibility and qual-
ity, thereby enhancing the algorithm’s ability to explore the
decision space and converge towards the CPF. The strategy
operates in several stages. First, it assesses the feasibility
of candidate paths by determining whether they traverse all
necessary points. Paths that meet all constraints are deemed
feasible, while those that do not are classified as infeasible.
When comparing a feasible path with an infeasible one, prior-
ity is given to the feasible path. In cases where both paths are
feasible, their dominance relationship is determined using tra-
ditional multi-objective dominance rules. Conversely, if both
paths are infeasible, CDP evaluates their quality based on
the number of necessary points traversed, granting dominance
to the path that passes through more necessary points. This
systematic mechanism is formalized in Algorithm 5, where
each step is carefully designed to address various scenarios
encountered in path comparison.

The advantages of CDP are multifaceted. By relaxing the
necessary point constraint, the strategy enables the explo-
ration of infeasible regions, expanding the algorithm’s search
capability in the decision space. This flexibility allows the
algorithm to navigate towards high-quality solutions that may
otherwise be disregarded. Furthermore, CDP improves the
diversity of solutions by utilizing infeasible paths to guide
the search process, ensuring the algorithm maintains a diverse
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Algorithm 5 Constraint Dominance Principle-Based Path
Comparison Strategy
Input: πa (Candidate path), πb (Candidate path), N E

(Necessary vertices set)
Output: C Dom (Boolean value whether πa constrained

dominates πb)
1 nca← 0, ncb← 0
2 nca← |πa ∩ N E |, ncb← |πb ∩ N E |
3 if h(πa) = 0 ∧ h(πb) ̸= 0 then
4 C Dom ← True
5 else if h(πa) = 0 ∧ h(πb) = 0 then
6 if πa ≺ πb then
7 C Dom ← True
8 else
9 C Dom ← False

10 else if h(πa) ̸= 0 ∧ h(πb) ̸= 0 then
11 if nca > ncb then
12 C Dom ← True
13 else
14 C Dom ← False

15 else
16 C Dom ← False

set of candidate paths—a critical requirement for multimodal
optimization problems.

E. Path Similarity-Based Multimodal Solutions Selection

Current MOEAs often exhibit limited effectiveness in solv-
ing MMMSPP due to their predominant focus on maintaining
diversity in the objective space while neglecting the dis-
tribution of solutions in the decision space. This oversight
frequently results in the loss of equivalent Pareto optimal
solutions, as structurally diverse solutions with identical
objective values are often discarded. Additionally, the lack
of explicit mechanisms to maintain decision-space diver-
sity leads to incomplete exploration, with certain regions
being over-explored while others remain underexplored, exac-
erbating premature convergence. Moreover, most existing
multimodal optimization methods are designed for continuous
real-valued problems, making them less suitable for combi-
natorial scenarios like MMMSPP, where path structures are
critical for capturing decision-space diversity and achieving
comprehensive exploration.

To address the challenges of MMMSPP, the path
similarity-based multimodal solutions selection strategy is
proposed, which integrates a path similarity metric into the
conventional non-dominated sorting framework. Unlike tradi-
tional methods that rely on objective-space diversity indicators,
this strategy prioritizes the diversity of solutions in the decision
space. The workflow of the proposed strategy is depicted
in Fig.6. The strategy begins by employing non-dominated
sorting with CDP-based path comparison strategy to organize
the population of candidate paths into multiple ranks based on

Fig. 6. Illustration of the path similarity-based multimodal solutions selection
strategy.

their dominance relationships in the presence of constraints.
The constrained non-dominated front obtained from this sort-
ing process is stored in the CPF, representing high-quality
solutions that achieve both feasibility and convergence. When
the population size exceeds the predefined maximum, the
selection process focuses on maintaining decision-space diver-
sity among the solutions in the last rank. At this stage, the path
similarity metric replaces the traditional crowding distance
as the diversity indicator. The formula for calculating path
similarity is presented as follows:

PathSimilari t y (πi ) =

∑|rank|
j=1 card

(
πi ∩ π j

)
card (πi )

(3)

where |rank| denotes the number of paths in the same rank,
the card represents a counting function, and card(πi ∩

π j ) signifies the number of common vertices between two
paths. Solutions with lower PathSimilari t y values, indicat-
ing higher diversity in the decision space, are retained

This strategy adheres to the basic workflow of non-
dominated sorting. The refined solutions from the last
rank, selected based on their path similarity, are combined
with higher-ranked solutions to form the next generation’s
population. This process systematically balances feasibility,
convergence, and diversity, ensuring that the algorithm effec-
tively captures the multimodal nature of MMMSPP. The
pseudo-code of Algorithm 6 illustrates these steps, where lines
2-14 describe the application of non-dominated sorting and
CPF construction and lines 16-34 focus on refining the last
rank by evaluating and retaining solutions based on their path
similarity metric.

Through this comprehensive approach, the strategy directly
addresses the limitations of traditional methods. By focusing
on decision-space diversity, it ensures that structurally distinct
solutions are preserved, even when their objective values are
identical. This not only enhances the algorithm’s ability to
explore underrepresented regions of the decision space but also
ensures a more complete and representative PF for MMMSPP.
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Algorithm 6 Path Similarity-Based Multimodal Solutions
Selection
Input: P (Population of candidate paths)
Output: P ′ (New population of candidate paths), CPF

(Constrained Pareto front)
1
−→
Do← ∅,

−−→
N D← 0, P ′← ∅, f ront ← ∅, CPF← ∅,

temp← ∅
2 for πi ∈ P with i ∈ {1, 2, . . . , |P|} do
3 for π j ∈ P with j ∈ {i + 1, . . . , |P|} do
4 if CDP-based path comparison strategy

(
πi , π j

)
then

5 Doi ← Doi ∪ {π j }, N D j ← N D j + 1

6 if CDP-based path comparison strategy
(
π j , πi

)
then

7 Do j ← Do j ∪ {πi }, N Di ← N Di + 1

8 if N Di = 0 and |P ′| < N then
9 P ′← P ′ ∪ {πi }, f ront ← f ront ∪ {πi }

10 CPF← f ront
11 while | f ront | ̸= 0 do
12 for π ∈ f ront do
13 i ← index(π, P)

14 for each π ′ in Doi do
15 j ← index(π ′, P), N D j ← N D j − 1
16 if N D j = 0 then
17 temp← temp ∪ {π ′}

18 f ront ← temp, temp← ∅
19 if |P ′| + | f ront | ≤ N then
20 P ′← P ′ ∪ f ront

21 else
22 for π ′′ ∈ f ront do
23 Calculate path similarity of π ′′

24 Sort f ront by path similarity in ascending order
25 P ′← P ′ ∪ {π ′′i for i = 1, 2, . . . , |N − |P ′||}

F. Complexity Analysis

In this section, the computational complexity of one gen-
eration of the proposed MMOEA-CDP is analyzed. During
the Graph Preprocessing phase, the proposed method for
constructing reduction vertices and reduction edges signifi-
cantly reduces the dimensionality of decision variables in the
solution encoding process. The time complexity of the Ini-
tialization phase is determined by the population size and the
dimensionality of the decision variables, resulting in O(N D).
Similarly, the Recombination phase, which includes crossover
and mutation operations applied to each individual in the
population, also has a time complexity of O(N D). The CDP-
based path comparison strategy involves two primary sources
of computational complexity. First, it requires determining
whether each node in a path belongs to the set of necessary
vertices N E . When using hash tables, this operation has a
time complexity of O(|N E |). Second, it involves evaluating
dominance relationships between individuals, which has a

time complexity of O(M), where M represents the number
of objectives. Consequently, the overall time complexity of
the CDP-based path comparison strategy is O(|N E | + M).
The time complexity of the Path similarity-based multimodal
solutions selection primarily stems from two components, one
is the non-dominated sorting process integrated with the CDP-
based path comparison strategy, which has a time complexity
of O(N 2(|N E | + M)), and the other is the calculation of
path similarity, with a time complexity of O(N 2 D). Exclud-
ing the Initialization phase, the computational complexity of
one generation of the proposed MMOEA-CDP is O(N D) +

O(N 2(|N E | + M + D)). According to Big-O notation, this
can be simplified to O(N 2(|N E | + M + D)).

V. EXPERIMENTAL SETTING

The experimental setup has been meticulously designed to
address three distinct research questions (RQs) and provide
empirical evidence, aiming to illuminate the performance of
MOEAs in tackling the MMMSPP problem under investiga-
tion.
• RQ1: Which is the best approach for solving MMMSPP?
• RQ2: Do the proposed constraint dominance

principle-based path comparison strategy and the
path similarity-based multimodal solutions selection
strategy enhance the overall algorithmic efficiency?

• RQ3: What level of impact can be expected from incor-
porating the required points as constraints in addressing
the multimodal multi-objective path planning problem?

To address RQ1, the performance of the proposed
MMOEA-CDP is compared with state-of-the-art algorithms
on benchmark test suites, their time complexities are analyzed,
and its practical effectiveness is validated through a case study
on real-world instances in Section VI-A. In order to tackle
RQ2, an ablation experiment will be conducted to assess
the performance of the proposed algorithm in Section VI-B.
To investigate RQ3, we will control the number of necessary
points to elucidate the impact of this constraint on problem
complexity in Section VI-C.

A. Test Problems

The algorithm’s ability to solve MMMSPP problems is
comprehensively evaluated from three perspectives: multi-
objective, multimodal, and constrained. To achieve this, three
categories of test problems are meticulously designed. The
type-I problems are relatively straightforward and evaluate
the algorithm’s capacity to preserve equivalent global optimal
solutions for a limited number of objective functions. The
type-II problems examine the algorithm’s capability to tackle
many-objective (the number of objective functions more than
three) [46] path planning problems, wherein the number of
objective functions is progressively augmented. The type-III
problems involve necessary points constraint. The problem
suite is derived from the 2021 IEEE CEC path planning com-
petition [45], and the maps are adapted from real transportation
networks in Chinese cities including Beijing, Zhengzhou, and
Chengdu. Fig. 7 illustrates the maps used in the test suite.
Information and features of the MMMSPP test suite are given
in detail in Table II.
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Fig. 7. Illustration of the map in test suite.

TABLE II
DESCRIPTION AND FEATURES OF THE MMMSPP TEST SUITE

B. Compared Algorithms

The performance of the proposed MMOEA-CDP is vali-
dated through a comparative analysis with five state-of-the-art
algorithms: ClusteringGA [57], DNEA [38], MDACO [44],
MMEA-SES [42], and MACOSX [43]. These algorithms
are specifically designed to address MMMSPP and were
participants in the IEEE CEC 2021 path planning compe-
tition [45]. ClusteringGA [57] employs a clustering-based
evolutionary framework that divides the population into sub-
populations, effectively enhancing decision-space diversity and
enabling the identification of multiple equivalent constrained
Pareto sets. DNEA [38] leverages a dual-niching strategy
that integrates niche-sharing mechanisms in both decision and
objective spaces, ensuring diverse solution sets by mitigat-
ing overlap in the decision space. MDACO [44] adopts a
multi-objective ant colony optimization approach, initializing

pheromones with Dijkstra’s algorithm and employing an adap-
tive pheromone adjustment strategy to preserve decision-space
diversity. MMEA-SES [42] introduces a customized crowd-
ing distance calculation and diversity-based fitness evaluation
tailored for MMMSPP, enhancing decision-space diversity
while maintaining convergence quality. MACOSX [43] inte-
grates a topological map-based preprocessing strategy into
the NSGA-II [30] framework, simplifying grid maps to
reduce computational complexity and improve optimization
efficiency.

C. Parameter Settings

The parameter settings of the comparison algorithms remain
consistent with those reported in the original papers. In most
problems, the maximum number of generations Gen parameter
is typically set to 100, while in problems 5, 10, and 12,
it is adjusted to values of 1000, 500, and 200 respectively.
Similarly, the population size N parameter is usually set to a
value of 100 across most problems; however, for problems 5,
9, 10 and 12 it is modified to values of 1500, 200, 2000, and
2000 respectively. To ensure fairness, the final experimental
results for all comparison algorithms represent the average of
30 independent runs.

D. Performance Indicator

To assess the performance of MOEAs, numerous metrics
have been proposed, such as the inverted generational distance
(IGD) [47], hypervolume (HV) [48], and additive epsilon
(EPS+) [49] indicators. However, in the context of MMMSPP
problems, the purpose is to identify all Pareto optimal paths
that may exhibit equivalent objective values. Consequently,
these metrics are unsuitable for evaluating the performance
of MOEAs on the MMMSPP test suite. Subsequently, the
metric of the number of distinct optimal solutions (NOS) [42]
is employed as the indicator to evaluate the performance. The
mathematical representation of NOS is depicted as follows:

N O S = card(O P S ∩ T P S) (4)

where OPS represents the Pareto solution set obtained by
the algorithm, TPS represents the true Pareto optimal solu-
tion set of the problem, and NOS denotes the number of
common solutions in OPS and TPS. A higher value of NOS
indicates a superior quality of the solution set derived from
the algorithm. Additionally, the Wilcoxon rank sum tests
are employed with a significance level of 0.05 to assess
the statistical significance of differences. The symbols “+”,
“−”, and “≈” denote that the compared algorithm per-
forms significantly better than, worse than, or equivalently to
the proposed MMOEA-CDP. The source codes of the pro-
posed MMOEA-CDP for MMMSPP are downloadable from
https://github.com/JaywayXu/MMOEA-CDP.

VI. RESULTS AND ANALYSIS

A. RQ1: Effectiveness of the MMOEA-CDP Approach

1) Performance on Benchmark Test Suite: To vali-
date the efficacy of the proposed approach, the proposed
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Fig. 8. Illustration of one of the optimal solutions for each problem. In type-I problems, the congested vertices are represented by red points. In type-II
problems, the degree of congestion is indicated by congestion functions. In type-III problems, the necessary points are denoted by yellow points.

MMOEA-CDP is compared with five state-of-the-art algo-
rithms. Table III presents the average and standard deviation
NOS values and obtained by MMOEA-CDP and the compared
algorithms on MMMSPP test suite, where thirty independent
runs are conducted for each algorithm on each test instance.
It is evident from the statistical results of Wilcoxon rank
sum test in the last row of Table III that MMOEA-CDP
demonstrates superior performance across all test instances.
And the proposed MMOEA-CDP is capable of identifying all
the optimal solutions. Conversely, the remaining algorithms
cannot perform well on all the test instances.

To be specific, ClusteringGA exhibits poor performance
across all test instances, primarily because its clustering-based
approach is not well-suited for the structural characteristics
of paths. The recombination process is confined to niches
formed within individual clusters, which significantly restricts
the algorithm’s exploratory capability in the decision space
and makes it prone to premature convergence to local optima.
DNEA performs worse than the proposed MMOEA-CDP on
9 out of 12 test instances. This is attributed to its neglect
of the unique structural characteristics of path encoding.
By relying solely on a simplistic linear combination of
decision-space niche ranges and objective-space crowding
distances as a diversity indicator, DNEA fails to effectively
preserve decision-space diversity. MDACO performs worse
than the proposed MMOEA-CDP on 5 out of 12 test instances.
Although it employs an ant colony optimization algorithm as
its search engine, its adaptive pheromone adjustment method
proves ineffective in handling multimodal multi-objective
problems with a large number of equivalent optimal solutions,
such as instances 5, 8, 9, 10, and 12. MMEA-SES improves
the environment selection strategy, thereby exhibiting superior

performance on most multimodal problems. However, as the
number of objectives increases, it fails to address the selection
pressure arising from many-objective scenarios, resulting in
suboptimal performance on Problems 9 and 10 with more
than four objectives. MACOSX is able to find all equivalent
optimal solutions in only 2 out of the 12 test instances. This
limitation arises because it relies on crowding distance in
the objective space for selecting superior individuals while
neglecting diversity in the decision space, which is crucial
for capturing all equivalent solutions in multimodal multi-
objective problems.

The noteworthy aspect is that the proposed MMOEA-CDP
exhibits superior performance compared to other algorithms
on test instances 5, 9, and 10, with over 20 equivalent optimal
solutions. The reason is that the proposed path similarity-
based multi-modal solution selection mechanism selects the
optimal solutions based on the distance between individuals
in the decision space, allowing it to retain all equivalent
Pareto optimal solutions. MMOEA-CDP also demonstrates
exceptional performance in instances involving constraints on
necessary points, such as problem 11 and 12. The reason is that
the proposed path comparison strategy based on the constraint
dominance principle allows for relaxation of constraints and
acceptance of partially satisfying infeasible solutions, depend-
ing on the level of constraint satisfaction. Consequently, this
approach empowers the population to span large infeasible
regions. Fig. 8 illustrates one optimal solution obtained by
the proposed MMOEA-CDP on each test instance. The Fig. 9
illustrates the complete set of optimal solutions for Problem
1 obtained through MMOEA-CDP. From the results, it can be
observed that MMOEA-CDP effectively preserves all optimal
solutions even when they possess identical objective values.
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Fig. 9. All different optimal solutions for problem 1, where the objective vectors are (31,3), (45,2), (49,1), and (65,0) for the 1-5th, 6th, 7-8th, and 9th
subfigures, respectively.

TABLE III
THE AVERAGE AND STANDARD DEVIATION OF NOS VALUES OBTAINED BY MMOEA-CDP AND THE COMPARED ALGORITHMS ON MMMSPP TEST

SUITE OVER 30 INDEPENDENT RUNS AND THE NUMBER OF OPTIMAL SOLUTIONS IN THE TRUE PS. BEST RESULT IS MARKED IN GRAY

While traditional MOEAs excel in identifying the Pareto
front, discovering all equivalent solutions remains a formidable
challenge.

2) Comparison of Time Complexity: To illustrate the com-
putational efficiency of the proposed MMOEA-CDP, Table IV
analyzes and compares the time complexities of the proposed
algorithm with several state-of-the-art approaches. The time
complexity of these algorithms primarily stems from three
components: convergence enhancement strategies, diversity

maintenance strategies, and feasibility satisfaction strategies.
Regarding convergence enhancement, both the MMOEA-CDP
and the comparison algorithms employ non-dominated sorting,
resulting in a time complexity of O(N 2 M), where all algo-
rithms perform equivalently.

For diversity maintenance, ClusteringGA adopts a
clustering-based approach with a time complexity of O(N 3),
which becomes inefficient as the population size increases.
DNEA, MDACO, MMEA-SES, and MACOSX consider
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Fig. 10. Optimal paths identified by MMOEA-CDP for the real-world road network of Wuhan during morning peak hours.

TABLE IV
TIME COMPLEXITY OF THE PROPOSED MMOEA-CDP ALGORITHM AND

THE COMPARED ALGORITHMS

both decision space and objective space diversity, incurring
a time complexity of O(N 2 M + N 2 D). In contrast, the
proposed MMOEA-CDP focuses solely on decision space
diversity, avoiding the complexity associated with objective
space evaluations, thereby reducing the time complexity to
O(N 2 D). This design demonstrates a significant efficiency
advantage, particularly when the dimensionality of decision
variables is high.

In terms of feasibility satisfaction, different strategies are
employed to handle necessary point constraints. ClusteringGA
and DNEA directly eliminate infeasible solutions by check-
ing whether each individual in the population satisfies the
necessary points, with a time complexity of O(N |N E |D).

MDACO, MMEA-SES, and MACOSX adopt a segmentation-
based approach, dividing paths by necessary points and
merging them to construct complete solutions. This method
incurs a time complexity of O(|N E |2 D2

+ |N E |!D), where
the factorial term |N E |! rapidly increases the computational
burden as the number of necessary points grows, significantly
limiting scalability. The proposed MMOEA-CDP, however,
integrates the CDP strategy to directly evaluate constraint
feasibility, achieving a time complexity of O(N 2

|N E |) and
avoiding the exponential cost associated with factorial opera-
tions.

By combining these components, the overall time complex-
ity of MMOEA-CDP is O(N 2(D + M + |N E |)). Compared
to other algorithms, MMOEA-CDP significantly reduces the
computational cost of both diversity maintenance and feasibil-
ity satisfaction. This efficiency, combined with its scalability
for problems with large numbers of necessary points or
high-dimensional decision variables, demonstrates the supe-
rior applicability and competitiveness of MMOEA-CDP for
solving complex MMMSPP problems.

3) Real-World Case Study: To validate the effectiveness of
the proposed MMOEA-CDP in real-world MMMSPP prob-
lems, it is applied to the urban road network of Wuhan, China,
during weekday morning peak hours. The start point is set at
Wuhan University of Science and Technology, and the end
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TABLE V
THE AVERAGE AND STANDARD DEVIATION OF NOS VALUES OBTAINED BY THE MOEA, MMOEA, MOEA-CDP, AND ORIGINAL MMOEA-CDP ON

THE SELECTED TEST INSTANCES IN MMMSPP TEST SUITE OVER 30 INDEPENDENT RUNS. BEST RESULT IS MARKED IN GRAY

Fig. 11. Convergence profiles and standard deviation of NOS results obtained by the MOEA, MMOEA, MOEA-CDP and original MMOEA-CDP.

point at Wuhan Optics Valley Software Park, with neces-
sary points set at Huazhong Agricultural University, Wuhan
University of Technology, Wuhan University, and Huazhong
University of Science and Technology. The optimization objec-
tives included minimizing path length, total congestion length,
maximizing road speed, minimizing the number of intersec-
tions, and minimizing the number of U-turns. To ensure the
identification of equivalent optimal solutions and maintain
multimodality in the decision space, epsilon-equivalence is

employed to introduce an appropriate tolerance for the equality
of objective function values. The optimal paths obtained using
the proposed MMOEA-CDP are shown in Fig. 10. Among
these, Path 1 has the longest length but experiences the shortest
congestion length. Paths 2, 3, and 4 have similar lengths; how-
ever, Path 3 passes through four congested segments, resulting
in the highest congestion length, although it avoids U-turns.
Paths 2 and 4 are identified as multimodal optimal solutions
due to their similar objective values across all criteria.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Wuhan University of Science and Technology. Downloaded on May 14,2025 at 04:43:41 UTC from IEEE Xplore.  Restrictions apply. 



16 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 12. (a) The Pareto front of the problem 12 in the MMMSPP test suite. (b)-(d) The number of equivalent Pareto optimal solutions corresponding to each
point on the Pareto front.

B. RQ2: Ablation Study of the MMOEA-CDP Approach
To verify the effectiveness of the proposed constraint dom-

inance principle-based path comparison strategy and the path
similarity-based multimodal solutions selection strategy, the
proposed MMOEA-CDP is compared with its variants on the
representative test instances in MMMSPP test suite. Compared
with the proposed MMOEA-CDP, the path similarity-based
multimodal solutions selection strategy is eliminated in
MOEA-CDP, the constraint dominance principle-based path
comparison strategy is removed in MMOEA, and both of these
proposed strategies are omitted in MOEA. The parameters
of these algorithms remain consistent with those described
above.

The average and standard deviation of NOS values obtained
by the original MMOEA-CDP and its variants on the selected

test instances over thirty independent runs are presented in
Table V. It is evident that the results achieved by the original
MMOEA-CDP significantly outperform those of its variants.
The performance of MMOEA is superior in addressing prob-
lems of type I and II, but it exhibits significant limitations
when dealing with problems of type III. This can be attributed
to the absence of the CDP-based path comparison strategy,
which leads to its inability to handle necessary points con-
straints present in type III problems. Conversely, type I and II
problems do not involve such constraints. Due to the absence
of the path similarity-based multimodal solutions selection
strategy, MOEA-CDP performs poorly on problems 5, 8-10,
and 12, which involve a large number of equivalent optimal
solutions. Lacking both of the proposed strategies, MOEA
performs poorly on most problems. It is only able to find

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Wuhan University of Science and Technology. Downloaded on May 14,2025 at 04:43:41 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: MULTI-OBJECTIVE OPTIMIZATION FOR MULTIMODAL MULTI-OBJECTIVE MULTI-POINT SHORTEST PATH PROBLEM 17

all equivalent optimal solutions in a few relatively simple
subproblems with fewer equivalent solutions.

Fig. 11 shows the average NOS numerical curves of
MMOEA-CDP and its standard deviations after running
30 times independently on the selected test instances in
MMMSPP test suite. The shaded region represents the measure
of standard deviation. It is evident that algorithms lacking
the path similarity-based multimodal solutions selection strat-
egy, such as MOEA and MOEA-CDP, exhibit premature
convergence issues and are susceptible to premature conver-
gence. The absence of any change in NOS values throughout
the generations when solving problems with necessary point
constraints, such as problem 11 and 12, in algorithms like
MOEA and MMOEA that do not employ the CDP-based path
comparison strategy suggests a critical need for its utilization
to effectively address such problems.

C. RQ3: Discussion About the Necessary Point Constraint

The effectiveness of modeling necessary points as con-
straints is verified through experiments conducted on problem
12, incorporating two necessary point constraints. MMOEA-
CDP serves as the optimization algorithm, with parameters
consistent with previous studies. The final result is obtained
by averaging 30 independent runs. Fig. 12 (a) illustrates the PF
of problem 12 in the MMMSPP test suite. The cyan squares
represent the true PF of the original problem 12, while the
green prisms depict the PF after removing one necessary point
constraint. Additionally, the red spheres indicate the PF of the
unconstrained problem 12 after eliminating all necessary point
constraints. The observation reveals that when the objective
functions remain unchanged, removing the necessary point
constraint leads to a relaxation of the satisfaction condition
for the optimal solution and causes the PF to shift closer
towards the coordinate origin. If the algorithm solely priori-
tizes convergence over feasibility, it will converge towards the
red unconstrained PF and fail to accurately capture the true
PF. Conversely, if feasibility is disregarded by the algorithm,
it lacks convergence pressure and may prematurely halt at a
local optimum that deviates significantly from the true PF.
Fig. 12 (b)-(d) shows the number of equivalent Pareto optimal
solutions corresponding to each point on the PF. It is evident
that a single point on PF corresponds to multiple solutions
in the decision space. Furthermore, the PF of problems with
the same objective functions but differing in constraints exhibit
overlapping regions. For instance, in the variations of problem
12, both the PF of the problems without the necessary point
constraint and the problem with one necessary point exhibit
optimal solutions with objective values of (41, 16.2, 18.4), (47,
14.4, 19.1), and (47, 16, 14.8).

VII. CONCLUSION AND FUTURE WORK

In real-world traffic scenarios, we frequently encounter
diverse unexpected conditions, such as abrupt disruptions
in road networks and unforeseen congestion events. Merely
seeking a few optimal path schemes that fulfill the objective
requirements is often insufficient; instead, decision makers
require a greater number of path schemes. The aim of

multimodal multi-objective multi-point path planning is to
identify all equivalent optimal solutions that satisfy the target
requirements and desired points, thereby offering drivers and
traffic decision makers an expanded range of route choices.

In this paper, a multi-objective evolutionary algorithm
MMOEA-CDP is proposed to solve the multimodal multi-
objective multi-point shortest path planning problem. The
MMOEA-CDP algorithm possesses the capability to iden-
tify all equivalent optimal solutions in the multi-objective
path planning problem, while considering necessary point
constraints. A constraint dominance principle-based path com-
parison strategy is proposed to relax the necessary point
constrains to enable the algorithm to traverse infeasible areas
and discover the true constrained Pareto front. A multimodal
solution selection strategy grounded in path similarity is pro-
posed to effectively maintain the diversity of decision space
solutions and preserve all equivalent Pareto optimal solutions.
In the experiments, the proposed MMOEA-CDP algorithm is
compared with state-of-the-art path planning algorithms in the
benchmark test suite, demonstrating its performance in solving
MMMSPP problems through experimental results.

In the future work, we will primarily focus on investigating
large-scale path planning problems that involve multiple objec-
tives, an increased number of necessary points, and exhibit
dynamic and time series characteristics. Furthermore, we will
extend the proposed MMOEA-CDP to address the traveling
salesman problem (TSP), vehicle routing problem (VRP), and
their respective variations. Simultaneously, we will explore the
application of innovative technologies and concepts to address
MMMSPP issues, encompassing novelty search and quality-
diversity optimization.

REFERENCES

[1] Z. Zhang, H. Qin, and Y. Li, “Multi-objective optimization for the
vehicle routing problem with outsourcing and profit balancing,” IEEE
Trans. Intell. Transp. Syst., vol. 21, no. 5, pp. 1987–2001, May 2020.

[2] S. A. Bouziaren and B. Aghezzaf, “An improved augmented ε-constraint
and branch-and-cut method to solve the TSP with profits,” IEEE Trans.
Intell. Transp. Syst., vol. 20, no. 1, pp. 195–204, Jan. 2019.

[3] L. Pasandi, M. Hooshmand, and M. Rahbar, “Modified a algorithm
integrated with ant colony optimization for multi-objective route-
finding; case study: Yazd,” Appl. Soft Comput., vol. 113, Dec. 2021,
Art. no. 107877.

[4] S. Zajac and S. Huber, “Objectives and methods in multi-objective
routing problems: A survey and classification scheme,” Eur. J. Oper.
Res., vol. 290, no. 1, pp. 1–25, Apr. 2021.

[5] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of
motion planning techniques for automated vehicles,” IEEE Trans. Intell.
Transp. Syst., vol. 17, no. 4, pp. 1135–1145, Apr. 2016.

[6] F. J. Pulido, L. Mandow, and J. L. Pérez de la Cruz, “Multiobjective
shortest path problems with lexicographic goal-based preferences,” Eur.
J. Oper. Res., vol. 239, no. 1, pp. 89–101, Nov. 2014.

[7] L. Chen and J. Chung, “Mobility-aware and congestion-relieved ded-
icated path planning for group-based emergency guiding based on
Internet of Things technologies,” IEEE Trans. Intell. Transp. Syst.,
vol. 18, no. 9, pp. 2453–2466, Sep. 2017.

[8] R. Tanabe and H. Ishibuchi, “A review of evolutionary multimodal
multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 24, no. 1,
pp. 193–200, Feb. 2020.

[9] F. Kudo, T. Yoshikawa, and T. Furuhashi, “A study on analysis of design
variables in Pareto solutions for conceptual design optimization problem
of hybrid rocket engine,” in Proc. IEEE Congr. Evol. Comput. (CEC),
Jun. 2011, pp. 2558–2562.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Wuhan University of Science and Technology. Downloaded on May 14,2025 at 04:43:41 UTC from IEEE Xplore.  Restrictions apply. 



18 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

[10] S. Cheng et al., “Dynamic multimodal optimization: A preliminary
study,” in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2019,
pp. 279–285.

[11] S. Han, K. Zhu, M. Zhou, and X. Cai, “Competition-driven multimodal
multiobjective optimization and its application to feature selection for
credit card fraud detection,” IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 52, no. 12, pp. 7845–7857, Dec. 2022.

[12] N. Tarrisson, M. Sébag, O. Teytaud, J. Lefèvre, and S. Baillet, “Multi-
objective multi-modal optimization for mining spatio-temporal patterns,”
in Proc. Actes de CAP 05, Conf. Francophone Sur l’Apprentissage
Automatique, Nice, France, Jan. 2005, pp. 217–230.

[13] Z. Ren, Z. B. Rubinstein, S. F. Smith, S. Rathinam, and H. Choset,
“ERCA: A new approach for the resource constrained shortest path prob-
lem,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 12, pp. 14994–15005,
Dec. 2023.

[14] L. Mandow and J.-L. Pérez-de-la Cruz, “A new approach to multiob-
jective a search,” in Proc. IJCAI Int. Joint Conf. Artif. Intell., 2005,
pp. 1–6.

[15] A. Sede no-noda and M. Colebrook, “A biobjective Dijkstra algorithm,”
Eur. J. Oper. Res., vol. 276, no. 1, pp. 106–118, Jul. 2019.

[16] P. Maristany de las Casas, A. Sedeño-Noda, and R. Borndörfer, “An
improved multiobjective shortest path algorithm,” Comput. Operations
Res., vol. 135, Nov. 2021, Art. no. 105424.

[17] C. Horoba, “Exploring the runtime of an evolutionary algorithm for the
multi-objective shortest path Problem*,” Evol. Comput., vol. 18, no. 3,
pp. 357–381, Sep. 2010.

[18] M. Nazarahari, E. Khanmirza, and S. Doostie, “Multi-objective multi-
robot path planning in continuous environment using an enhanced
genetic algorithm,” Exp. Syst. Appl., vol. 115, pp. 106–120, Jan. 2019.

[19] P. Hansen, “Bicriterion path problems,” in Multiple Criteria Deci-
sion Making Theory and Application, vol. 177. Heidelberg, Germany:
Springer, 1980, pp. 109–127.

[20] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
in Edsger Wybe Dijkstra: His Life, Work, and Legacy, vol. 45, 1st ed.,
New York, NY, USA: ACM, 2022, pp. 287–290.

[21] E. Q. V. Martins, “On a multicriteria shortest path problem,” Eur. J.
Oper. Res., vol. 16, no. 2, pp. 236–245, May 1984.

[22] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. SCS-4, no. 2, pp. 100–107, Jul. 1968.

[23] S. B. Stewart and C. C. White, “Multiobjective A,” J. ACM, vol. 38,
no. 4, pp. 775–814, Oct. 1991.

[24] P. Dasgupta, P. P. Chakrabarti, and S. C. DeSarkar, Multiobjective
Heuristic Search: An Introduction To Intelligent Search Methods for
Multicriteria Optimization. Cham, Switzerland: Springer, 1999.

[25] L. Galand and P. Perny, “Search for compromise solutions in mul-
tiobjective state space graphs,” in Proc. 17th Eur. Conf. Artif. Intell.
(ECAI), Riva del Garda, Italy. Amsterdam, The Netherlands: IOS Press,
May 2006, pp. 93–97.

[26] L. Mandow and J. L. Pérez de la Cruz, “A heuristic search algorithm
with lexicographic goals,” Eng. Appl. Artif. Intell., vol. 14, no. 6,
pp. 751–762, Dec. 2001.

[27] L. Mandow and José. L. P. De La Cruz, “Multiobjective a search with
consistent heuristics,” J. ACM, vol. 57, no. 5, p. 27, Jun. 2008.

[28] Z. Ren, R. Zhan, S. Rathinam, M. Likhachev, and H. Choset, “Enhanced
multi-objective a using balanced binary search trees,” in Proc. Int.
Symp. Combinat. Search, Jul. 2022, vol. 15, no. 1, pp. 162–170.

[29] C. H. Ulloa, W. Yeoh, J. A. Baier, H. Zhang, L. Suazo, and S. Koenig,
“A simple and fast bi-objective search algorithm,” in Proc. Int. Conf.
Automated Planning Scheduling, vol. 30, Jun. 2020, pp. 143–151.

[30] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[31] C. Wang, B. Ma, and J. Sun, “A co-evolutionary genetic algorithm
with knowledge transfer for multi-objective capacitated vehicle routing
problems,” Appl. Soft Comput., vol. 148, Nov. 2023, Art. no. 110913.

[32] Y. Wang, Y. Wei, X. Wang, Z. Wang, and H. Wang, “A clustering-based
extended genetic algorithm for the multidepot vehicle routing problem
with time windows and three-dimensional loading constraints,” Appl.
Soft Comput., vol. 133, Jan. 2023, Art. no. 109922.

[33] W. Zhang, D. Yang, G. Zhang, and M. Gen, “Hybrid multiobjective
evolutionary algorithm with fast sampling strategy-based global search
and route sequence difference-based local search for VRPTW,” Expert
Syst. Appl., vol. 145, May 2020, Art. no. 113151.

[34] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization by
a colony of cooperating agents,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 26, no. 1, pp. 29–41, Feb. 1996.

[35] H. Zhang, Q. Zhang, L. Ma, Z. Zhang, and Y. Liu, “A hybrid ant colony
optimization algorithm for a multi-objective vehicle routing problem
with flexible time windows,” Inf. Sci., vol. 490, pp. 166–190, Jul. 2019.

[36] M. Chica, Ó. Cordón, S. Damas, and J. Bautista, “Multiobjective
constructive heuristics for the 1/3 variant of the time and space assembly
line balancing problem: ACO and random greedy search,” Inf. Sci.,
vol. 180, no. 18, pp. 3465–3487, Sep. 2010.

[37] K. Deb and S. Tiwari, “Omni-optimizer: A generic evolutionary
algorithm for single and multi-objective optimization,” Eur. J. Oper. Res.,
vol. 185, no. 3, pp. 1062–1087, Mar. 2008.

[38] Y. Liu, H. Ishibuchi, Y. Nojima, N. Masuyama, and K. Shang, “A
double-niched evolutionary algorithm and its behavior on polygon-based
problems,” in Parallel Problem Solving from Nature—PPSN, A. Auger,
C. M. Fonseca, N. Lourenço, P. Machado, L. Paquete, and D. Whitley,
Eds., Cham, Switzerland: Springer, 2018, pp. 262–273.

[39] J. J. Liang, C. T. Yue, and B. Y. Qu, “Multimodal multi-objective
optimization: A preliminary study,” in Proc. IEEE Congr. Evol. Comput.
(CEC), Vancouver, BC, Canada, Jul. 2016, pp. 2454–2461.

[40] J. Zou, Q. Deng, Y. Liu, X. Yang, S. Yang, and J. Zheng, “A
dynamic-niching-based Pareto domination for multimodal multiob-
jective optimization,” IEEE Trans. Evol. Comput., vol. 28, no. 5,
pp. 1529–1543, Oct. 2024.

[41] C. Luo, X. Li, W. Gong, and L. Gao, “Affinity propagation hierarchical
memetic algorithm for multimodal multi-objective flexible job shop
scheduling with variable speed,” IEEE Trans. Evol. Comput., early
access, Jan. 1, 2025, doi: 10.1109/TEVC.2024.3521585.

[42] X. Yao, W. Li, X. Pan, and R. Wang, “Multimodal multi-objective
evolutionary algorithm for multiple path planning,” Comput. Ind. Eng.,
vol. 169, Jul. 2022, Art. no. 108145.

[43] J. Zhao et al., “Path planning based on multi-objective topologi-
cal map,” in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2021,
pp. 1719–1726.

[44] J. Jing, L. Zhang, C. Shen, and K. Zhang, “Research on multi-modal
multi-objective path planning by improved ant colony algorithm,” in
Bio-Inspired Computing: Theories and Application (Communications in
Computer and Information Science), L. Pan, D. Zhao, L. Li, and J. Lin,
Eds., Singapore: Springer, 2023, pp. 17–28.

[45] J. Liang, C. Yue, G. Li, B. Qu, P. N. Suganthan, and K. Yu, “Problem
definitions and evaluation criteria for the cec 2021 on multimodal
multiobjective path planning optimization,” Dec. 2020. Accessed: Apr.
03, 2025. [Online]. Available: https://www.researchgate.net/profile/Cai-
Yue-3/publication/348136850_Problem_Definitions_and_Evaluation_
Criteria_for_the_CEC_2021_on_Multimodal_Multiobjective_Path_
Planning_Optimization/links/5fefeb3245851553a010f854/Problem-
Definitions-and-Evaluation-Criteria-for-the-CEC-2021-on-Multimodal-
Multiobjective-Path-Planning-Optimization.pdf

[46] R. Wang, Z. Zhou, H. Ishibuchi, T. Liao, and T. Zhang, “Localized
weighted sum method for many-objective optimization,” IEEE Trans.
Evol. Comput., vol. 22, no. 1, pp. 3–18, Feb. 2018.

[47] P. Czyzżak and A. Jaszkiewicz, “Pareto simulated annealing—A meta-
heuristic technique for multiple-objective combinatorial optimization,”
J. Multi-Criteria Decis. Anal., vol. 7, no. 1, pp. 34–47, Jan. 1998.

[48] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A
comparative case study and the strength Pareto approach,” IEEE Trans.
Evol. Comput., vol. 3, no. 4, pp. 257–271, Nov. 1999.

[49] E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca, and V. da Fonseca,
“Performance assessment of multiobjective optimizers: An analysis
and review,” IEEE Trans. Evol. Comput., vol. 7, no. 2, pp. 117–132,
Apr. 2003.

[50] M. Li, X. Han, and X. Chu, “MOEAs are stuck in a different area
at a time,” in Proc. Genetic Evol. Comput. Conf. (GECCO), 2023,
pp. 303–311.

[51] A. Hidalgo-Paniagua, M. A. Vega-Rodríguez, and J. Ferruz, “Applying
the MOVNS (multi-objective variable neighborhood search) algorithm
to solve the path planning problem in mobile robotics,” Expert Syst.
Appl., vol. 58, pp. 20–35, Oct. 2016.

[52] R. Martí, V. Campos, M. G. C. Resende, and A. Duarte, “Multiobjective
GRASP with path relinking,” Eur. J. Oper. Res., vol. 240, no. 1,
pp. 54–71, Jan. 2015.

[53] K. Zhang, C. Shen, G. G. Yen, Z. Xu, and J. He, “Two-stage double
niched evolution strategy for multimodal multiobjective optimization,”
IEEE Trans. Evol. Comput., vol. 25, no. 4, pp. 754–768, Aug. 2021.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Wuhan University of Science and Technology. Downloaded on May 14,2025 at 04:43:41 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TEVC.2024.3521585


XU et al.: MULTI-OBJECTIVE OPTIMIZATION FOR MULTIMODAL MULTI-OBJECTIVE MULTI-POINT SHORTEST PATH PROBLEM 19

[54] W. Li, T. Zhang, R. Wang, S. Huang, and J. Liang, “Multimodal
multi-objective optimization: Comparative study of the state-of-the-art,”
Swarm Evol. Comput., vol. 77, Mar. 2023, Art. no. 101253.

[55] A. E. Rodriguez-Fernandez, L. Schäpermeier, C. Hernández,
P. Kerschke, H. Trautmann, and O. Schütze, “Finding ϵ-locally
optimal solutions for multi-objective multimodal optimization,”
IEEE Trans. Evol. Comput., early access, Sep. 11, 2024, doi:
10.1109/TEVC.2024.3458855.

[56] Z. Wei, W. Gao, M. Gong, and G. G. Yen, “A bi-objective evolutionary
algorithm for multimodal multiobjective optimization,” IEEE Trans.
Evol. Comput., vol. 28, no. 1, pp. 168–177, Feb. 2024.

[57] G. Li, W. Zhang, C. Yue, and G. G. Yen, “Clustering-based evolutionary
algorithm for constrained multimodal multi-objective optimization,”
Swarm Evol. Comput., vol. 91, Dec. 2024, Art. no. 101714.

[58] R. Chai, A. Savvaris, A. Tsourdos, Y. Xia, and S. Chai, “Solv-
ing multiobjective constrained trajectory optimization problem by an
extended evolutionary algorithm,” IEEE Trans. Cybern., vol. 50, no. 4,
pp. 1630–1643, Apr. 2020.

[59] R. Chai et al., “Real-time reentry trajectory planning of hypersonic vehi-
cles: A two-step strategy incorporating fuzzy multiobjective transcription
and deep neural network,” IEEE Trans. Ind. Electron., vol. 67, no. 8,
pp. 6904–6915, Aug. 2020.

[60] R. Chai, A. Tsourdos, A. Savvaris, S. Chai, Y. Xia, and C. L. P. Chen,
“Multiobjective overtaking maneuver planning for autonomous ground
vehicles,” IEEE Trans. Cybern., vol. 51, no. 8, pp. 4035–4049,
Apr. 2021.

[61] R. Chai, A. Tsourdos, A. Savvaris, S. Chai, Y. Xia, and C. Chen, “Mul-
tiobjective optimal parking maneuver planning of autonomous wheeled
vehicles,” IEEE Trans. Ind. Electron., vol. 67, no. 12, pp. 10809–10821,
Jan. 2020.

[62] R. Chai, A. Tsourdos, S. Chai, Y. Xia, A. Savvaris, and C. L. P. Chen,
“Multiphase overtaking maneuver planning for autonomous ground
vehicles via a desensitized trajectory optimization approach,” IEEE
Trans. Ind. Informat., vol. 19, no. 1, pp. 74–87, Jan. 2023.

[63] R. Chai, H. Niu, J. Carrasco, F. Arvin, H. Yin, and B. Lennox,
“Design and experimental validation of deep reinforcement learning-
based fast trajectory planning and control for mobile robot in unknown
environment,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 4,
pp. 5778–5792, Apr. 2024.

[64] R. Chai et al., “A two phases multiobjective trajectory optimization
scheme for multi-UGVs in the sight of the first aid scenario,” IEEE
Trans. Cybern., vol. 54, no. 9, pp. 5078–5091, Sep. 2024.

[65] R. Chai, Y. Guo, Z. Zuo, K. Chen, H.-S. Shin, and A. Tsourdos,
“Cooperative motion planning and control for aerial-ground autonomous
systems: Methods and applications,” Prog. Aerosp. Sci., vol. 146,
Apr. 2024, Art. no. 101005.

Zhiwei Xu (Member, IEEE) received the B.S.
degree in information security and the Ph.D. degree
in control science and engineering from Wuhan Uni-
versity of Science and Technology, Wuhan, China,
in 2017 and 2022, respectively.

He is currently a Lecturer at the School of Com-
puter Science and Technology and Hubei Provincial
Key Laboratory of Intelligent Information Pro-
cessing and Real-Time Industrial Systems, Wuhan
University of Science and Technology. His research
interests include intelligent transportation systems,

evolutionary computation, and multi-objective optimization.

Kai Zhang (Member, IEEE) received the Ph.D.
degree in system analyses and integrate from the
Huazhong University of Science and Technology,
Wuhan, China, in 2008.

He was a Post-Doctoral Research Fellow with
the School of Electronics Engineering and Com-
puter Science, Peking University, Beijing, China,
from 2008 to 2010. He is currently a Professor
and the Dean of the School of Computer Science
and Technology, Wuhan University of Science and
Technology, Wuhan. His research interests include

evolutionary computation, intelligent transportation systems, and multicriteria
decision making.

Javier Del Ser (Senior Member, IEEE) received the
Ph.D. degree in telecommunication engineering from
the University of Navarra, Spain, in 2006, and the
Ph.D. degree (summa cum laude) in computational
intelligence from the University of Alcalá, Spain,
in 2013. He is currently a Research Professor of data
analytics and optimization with Tecnalia, Spain, and
an Adjunct Professor at the University of the Basque
Country (UPV/EHU). He has published more than
400 journal articles, book chapters, and conference
contributions, co-supervised 11 Ph.D. theses, edited

six books, and coinvented nine patents in the broad topics of artificial
intelligence, data science, and optimization. He is an Associate Editor of
several journals related to areas of artificial intelligence, including Swarm
and Evolutionary Computation, Information Fusion, Cognitive Computation
and IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS.

Miqing Li (Senior Member, IEEE) received
the B.Sc. degree in computer science from
Hunan University, Changsha, China, in 2004, the
M.Sc. degree in computer science from Xiang-
tan University, Xiangtan, China, in 2008, and
the Ph.D. degree in computer science from the
Brunel University of London, London, U.K.,
in 2015.

He is currently an Assistant Professor with the
University of Birmingham, Birmingham, U.K. His
research interests include multiobjective optimiza-

tion, where he focuses on developing population-based randomized algorithms
(mainly evolutionary algorithms) for both general challenging problems
(e.g., many-objective optimization, combinatorial optimization, constrained
optimization, robust optimization, and expensive optimization), and specific
application problems (e.g., those in software engineering, high-performance
computing, product disassembly, supply chain, neural architecture search, and
reinforcement learning).

Xin Xu (Senior Member, IEEE) received the B.S.
and Ph.D. degrees in computer science and engi-
neering from Shanghai Jiao Tong University, China,
in 2004 and 2012, respectively. He is currently a
Full Professor with the School of Computer Science
and Technology, Wuhan University of Science and
Technology, China. His current research interests
include artificial intelligence, computer vision, and
image processing. He was shortlisted as the Best
Paper Finalist of the IEEE International Conference
on Multimedia and Expo (ICME) in 2021.

Juanjuan He (Member, IEEE) received the Ph.D.
degree in engineering from the School of Automa-
tion, Huazhong University of Science and Technol-
ogy, Wuhan, China, in 2014.

She is currently an Associate Professor of com-
puter science with Wuhan University of Science and
Technology, Wuhan. She has been invited to the
Department of Computer Science, Western Univer-
sity, London, ON, Canada, as a Visiting Professor
for 24 months. Her research interests include com-
putational intelligence, machine learning, membrane

computing, and various application domains.

Ni Wu received the B.S. and M.S. degrees from
Central China Normal University, Wuhan, China,
in 2015 and 2018, respectively. She is currently
pursuing the Ph.D. degree with Hubei Province Key
Laboratory of Intelligent Information Processing and
Real-Time Industrial System. Her current research
interests include evolutionary computation, multiob-
jective optimization, and feature selection.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Wuhan University of Science and Technology. Downloaded on May 14,2025 at 04:43:41 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TEVC.2024.3458855

