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a b s t r a c t

Inspired by human brains’ ability to solve multiple tasks simultaneously, evolutionary multitasking
is proposed to improve the overall efficiency of optimizing multiple tasks simultaneously by reusing
the learned knowledge. The immune algorithm is inspired by the biological immune system that has
been proven to be effective in many practical multiobjective optimization problems, with efficient
convergence and search efficiency. In this paper, a novel multiobjective multifactorial immune
algorithm is proposed with a novel information transfer method to solve multiobjective multitask
optimization problems. For each task, information advantageous for this task will be transferred from
the others to accelerate convergence through the proposed information transfer method. Finally, the
proposed algorithm is compared with the state-of-the-art multiobjective evolutionary multitasking
algorithms and the classic multiobjective evolutionary algorithms. The experimental results on the
classical multiobjective multitask and the multiobjective many-task test suites demonstrate that the
proposed algorithm provides very promising performances.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Many scientific and engineering applications require the si-
ultaneous optimization of multiple often conflicting objectives.
hey are called multiobjective optimization problems (MOPs),
ithout loss of generality, suppose the problem is a minimization
roblem, a MOP can be indicated as follows:

in
x∈Ω

F (x) = (f1 (x) , f2 (x) , f3 (x) , . . . , fM (x)) (1)

here x = (x1, x2, x3, . . . , xD) ϵΩ is a decision vector with D
imensions, Ω is the feasible region of the decision space, map-
ing function F:Ω → RM defines M objective functions and RM

s the objective space. As the objectives may conflict with each
ther, it is usually impossible to find a solution that can meet
he optimal conditions of all the objectives simultaneously. Thus,
he definition of Pareto optimal is adopted to find out the best
rade-offs among all the objectives. Given two decision vectors x
nd y, if ∀i ∈ {1, 2, 3 . . . ,M} fi(x) ≤ fi(y) and ∃j ∈ {1, 2, 3 . . .M}

j(x) < fj(y), x is said to Pareto dominate y denoted as x ≺ y.
f a solution x* is not to be dominated by any other solutions
n Ω , x* is called a Pareto optimal solution or a nondominated
olution. The set of all the Pareto optimal solutions is credited as
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the Pareto optimal set (PS). The set of vectors of objective values
corresponding to PS is called Pareto optimal front (PF) [1].

Multiobjective evolutionary algorithms (MOEAs) have been
widely used to solve MOPs because of their advantage of using
only a small amount of unique dominance relationships and
the population-based searching mechanism to obtain multiple
Pareto optimal solutions in a single run [2–8]. The state-of-the-
art and most famous MOEAs include the nondominated sort-
ing genetic algorithm II (NSGA-II) [9], strength Pareto evolu-
tionary algorithm (SPEA2) [10], MOEA based on decomposition
(MOEA/D) [11]. These MOEAs are designed to solve one MOP
once at a time and when faced with a new problem, the pop-
ulation must be reinitialized. But many MOPs in the real-world
are related and the knowledge gained from solving a problem can
provide insights for solving similar problems.

Inspired by the human brain’s ability to process multiple
tasks simultaneously [12], Gupta et al. [13] proposed a new
paradigm in the evolutionary computation field namely multitask
optimization (MTO) to solve multiple optimization problems si-
multaneously. Unlike conventional evolutionary algorithms (EAs),
which aim to find the optimal solution for a single optimiza-
tion problem, evolutionary multitasking (EMT) algorithms aim to
improve solution quality and overall convergence rate of each
task by utilizing potentially similar information among simul-
taneous optimized tasks [14]. EMT algorithms have received
increasing attention, and various of them have been proposed
to solve many complex problems including MOPs [15–28]. For

https://doi.org/10.1016/j.asoc.2021.107399
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xample, Gupta et al. [13] presented a multifactorial evolutionary
lgorithm (MFEA) and proposed a multifactorial evolutionary
ramework including the mechanisms of assortative mating and
ertical cultural transmission to empower the conventional EAs
o solve MTO problems. Subsequently, the multiobjective multi-
actorial evolutionary algorithm (MOMFEA) [22] was proposed,
hich inherited the theories proposed by the MFEA and intro-
uced the NSGA-II into the multifactorial framework to solve the
ultiobjective multitask optimization problem (MOMTO). Feng
t al. [24] proposed an EMT algorithm with explicit genetic trans-
er across tasks by autoencoding (EMT-EGT) to effectively exploit
ultiple biases provided by various evolutionary operators to

mprove search performance. With more and more EMT algo-
ithms being proposed, multiobjective many-task optimization
MOMaTO) has been paid much attention in the MOMTO area.
hen et al. [26] proposed a many-task evolutionary algorithm
MaTEA) with the adaptive selection mechanism based on the
ewards of knowledge transfer to pick out the most appropri-
te assisted task from many candidate tasks for multiobjective
any-task optimization problems.
However, most existing EMT algorithms perform well when

olving two or three tasks simultaneously, but when solving the
any-task problems the performance is not satisfactory. Neg-
tive knowledge transfer and low computational efficiency are
he primary causes. In the state-of-the-art multifactorial frame-
ork, the information transfer occurs at a fixed probability. When
olving many-task optimization problems, a large amount of use-
ess information will disrupt the optimization processes of the
arget task. The EMT-EGT [24] implements the explicit informa-
ion transfer through autoencoder. Although it has the ability to
educe the occurrence of negative transfer, it will cause unbear-
ble calculation time as the number of the objective functions
ncreases. The MaTEA [26] only selects the tasks possessing a
imilar distribution of solutions for transferring, the computing of
he similarity of the distribution between every two tasks among
any tasks will introduce a huge amount of additional calculation
mount. In addition, the PSs of most practical problems are het-
rogeneous and the similarity of different task solutions cannot
e a splendid guide for information transfer.
In this paper, a novel multiobjective multifactorial immune

lgorithm (MOMFIA) is proposed to solve MOMTO and MO-
aTO problems. The proposed MOMFIA applied a novel multi-
opulation framework and a novel information transfer method
ased on the dimensional information of solutions (DIS). The
roposed multi-population framework can evenly distribute in-
ividuals to different subpopulations, each of which maintains an
ndependent task module, can evolve independently, but is also
quipped to transfer their knowledge when necessary. Compared
ith the traditional mixed population evolution mode, the multi-
opulation framework can avoid the negative transfer caused by
ther unsuitable tasks and is conducive to analyzing the char-
cteristics of different tasks to select the most suitable task for
nowledge transfer. The proposed information transfer method
ased on DIS can construct a transfer population to provide
avorable transfer information to the target task according to the
terative trend of the clustering center of nondominated solutions
n each dimension of the population. The most important feature
f this approach is that it not only relies on the knowledge
rovided by a single task but also selects information beneficial
o the convergence of the target task among a massive number of
asks. Compared with the traditional method of selecting a single
ask for information transfer, this method can learn from more in-
ormation sources and reduce the extra calculations caused by the
valuation of the similarity of different tasks. It is efficient when
olving MOMaTO problems. To verify the effectiveness of the

roposed MOMFIA, comprehensive experiments are conducted

2

on the MOMTO benchmark test suite [27], and the MOMaTO
CEC2019 competition benchmark test suite [28]. The proposed
MOMFIA has achieved obvious advantages in comparison with
other MOEAs.

The main contributions of this paper are highlighted as fol-
lows:

(1) A novel information transfer mechanism based on the di-
mensional information of solutions is proposed to realize efficient
utilization and transfer among different tasks.

(2) A novel multiobjective evolutionary multitasking algo-
rithm framework based on multi-population is proposed to im-
prove the efficiency of source task selection and knowledge
transfer between tasks.

(3) The proposed MOMFIA is the first attempt to introduce
an artificial immune algorithm into the field of multiobjective
multitask optimization. The excellent convergence ability of the
immune algorithm brings strong momentum to the optimization.

(4) To assess the performance of the proposed MOMFIA, ex-
periments are conducted on the classical MOMTO and MOMaTO
test suites, the proposed MOMFIA is compared with two state-
of-the-art MOEAs, such as NSGA-II and NNIA, and the well-known
multiobjective EMT algorithm MOMFEA. The experimental results
demonstrate that the proposed MOMFIA is superior to other
comparison algorithms.

The remaining of this paper is constructed as follows. Section 2
reviews the concept of MTO and the notion of the multiobjective
immune algorithm. Section 3 describes the proposed MOMFIA
and the proposed information transfer mechanism based on DIS.
Section 4 presents comprehensive experiments on both MOMTO
and MOMaTO benchmark test suites to prove the superiority of
the proposed MOMFIA. Finally, Section 5 summarizes this work
and suggests some future directions.

2. Related work

2.1. Multitask optimization

Generally, according to the number of objective functions
contained in a single problem, current mainstream optimiza-
tion problems can be classified as MOPs and single objective
optimization problems (SOPs) two categories. Inspired by the
human cognitive ability to multitask processing, the knowledge
gained from problem-solving can inspire optimization of related
problems [13]. MTO is committed to implementing the evolu-
tionary search on multiple optimization tasks simultaneously
to improve convergence by seamlessly transferring knowledge
between different problems.

Even though the MOP needs to optimize multiple objective
functions simultaneously, its purpose is ultimately to solve one
single problem, from the perspective of EMT, the MOEA is ulti-
mately a single-task algorithm. However, the EMT algorithm is
committed to simultaneously solving multiple unrelated prob-
lems, which may be SOPs, MOPs, or mixtures, and the decision
space of each problem is heterogeneous. Both the SOP and the
MOP can be considered as the special case of the MTO paradigm
when there is only one task. And when a MTO problem contains
one or more MOPs, it is called a MOMTO problem. Fig. 1 shows
a schematic diagram of the MTO paradigm, in which all tasks
to be optimized will be regarded as the input, and after the
optimization of the EMT algorithm, MTO paradigm will output
the optimal solutions for each task separately.

Without loss of generality, assume that the K problems to
be solved simultaneously are all minimization problems, Eq. (2)
is the formal expression of the MTO paradigm, and the optimal
solution of the jth task Tj (j = 1, 2, . . .K ) is represented as x∗

j .
∗ ∗ ∗
{x1, x2, . . . , xK }
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Fig. 1. Illustration of multitask optimization.
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= {argminT1 (x1) , argminT2 (x2) , . . . , argminTK (xK )} (2)

Inspired by the multifactorial inheritance theory [29,30], the
well-known multifactorial framework [13] is proposed to solve
the MTO problems. In the multifactorial framework, each task is
regarded as a cultural bias that can directly influence the evo-
lution of offspring. The information exchange between tasks can
be carried out by the hybridization of individuals with different
cultural biases [31]. To execute information exchange between
heterogeneous decision space, the multifactorial framework pro-
poses the unified decision space theory. To guarantee the ef-
ficiency and intensity of information exchange, the assortative
mating and the vertical cultural transmission mechanisms are
proposed respectively. Unified decision space theory, assortative
mating and vertical cultural transmission mechanisms are the
three major constructing ideas of the multifactorial framework.
The multifactorial framework is the earliest proposed instructive
paradigm for solving MTO problems and is followed by almost
the whole subsequent EMT algorithms [18–21].

The unified decision space theory is dedicated to providing
the same number of dimensions of the decision variables and
the same upper and lower bounds of decision variables in each
dimension of different tasks. The number of dimensions of the
unified decision space is the max number of dimensions of deci-
sion variables of all the tasks, and the upper and lower bounds
of the unified space are generally set to 0 and 1 respectively.
When performing population initialization, all individuals will be
encoded into the unified decision space. And when an individual
requires to be evaluated in a specific task, it will be scaled to
the decision space of the corresponding problem, which namely
decoding.

The assortative mating theory believes that the mating should
be performed between the individuals from the same cultural
environment. During the population initialization phase, each in-
dividual is assigned a skill factor to mark the task which it is adept
at. To improve the evaluation efficiency, each individual will only
be evaluated on the task corresponding to the skill factor. In
the process of population evolution and selection, the skill factor
which determines the current cultural environment of the indi-
vidual will be redistributed. The assortative mating theory only
allows the hybridization of individuals with the same skill factors
to guarantee the excellent genes can inherit preferentially in their

cultural environment, while the hybridization with different skill a

3

factors needs to satisfy the random mating probability (rmp), an
rtificial threshold that is designed to control the information
igration intensity.
The vertical cultural transmission mechanism is the concrete

anifestation of Darwinism in the multicultural environment
hat offspring should inherit their skill factors from their parents.
pecifically, the offspring obtained by the crossover operator
nherits the skill factor from its parents with the same probability,
nd the offspring produced by the mutation operator will inherit
he skill factor of its only parent.

.2. Multiobjective immune algorithm

The artificial immune system is mainly based on the infor-
ation processing mechanism of the biological immune system

o solve complex optimization problems [32]. In the artificial
mmune system area, the objective function is likened to the
ntigen, the candidate solution is considered the antibody, and
he fitness value of a candidate solution is seen as the affinity
hich indicates the ability of the antibody to bind to the antigen.
With the rise of the artificial immune system, the multiob-

ective immune algorithm (MOIA) has been proposed to solve
OPs [32]. Specifically, the characteristic of MOIAs is the clonal
election principle that only a small proportion of individuals
ith fine convergence and diversity are proliferated to produce
ultiple clones [33–35]. Then, each clone is evolved by recom-
ination and hypermutation to become a better individual. In
his way, preponderant individuals take up more evolutionary
esources, which helps speed up convergence. Therefore, MOIAs
ave competitive advantage in population diversity and conver-
ence speed compared with other MOEAs [36–42]. Multiobjective
mmune algorithm with nondominated neighbor-based selection
NNIA) [34] is the first MOIA with real value encoding. In each
eneration, NNIA selects the solutions with superior crowding
istance in the PF as the parents of the clone operator. Accord-
ng to the characteristics of the immune system, MOIAs can be
ategorized into three classes: the MOIAs based on the advanced
lonal selection method, the MOIAs based on immune network
ethods, and the hybrid MOIAs.
The first kind of MOIAs is designed based on the clonal selec-

ion method [43], and the clone operator is applied to produce
he copies of antibodies that have the highest affinity values. Yoo

nd Hajela [44] proposed the first related work on MOIAs and
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ntroduced the concept of antibody and antigen affinity into the
OPs for the first time. Jiao et al. [45] proposed the immune
ominance clonal multiobjective algorithm which presented the
ntibody–antibody affinity concept to reflect the similarity be-
ween antibodies to guide the algorithm to focus more on the area
hat candidate solutions sparsely distributed. Coello et al. [46]
resented a multiobjective immune system algorithm that not
nly inherited the clonal resource allocation method based on
he fitness value but also introduced an adaptive grid method to
mprove the diversity of the population.

The second type of MOIAs employs immune network theory
o evolve the population and hold the diversity of the population.
reschi et al. [47] proposed an artificial immune network based
n a novel double-loop mechanism for MOPs. The inner loop of
he algorithm is utilized for global search, and the outer loop
s applied to remove individuals with high similarity to main-
ain the diversity of the population. Gao et al. [48] came up
ith a weight-based MOIA that a random weighted sum method
as introduced to evaluate the fitness and a novel truncation
ethod was proposed to eliminate the highly similar individuals

o ensure population diversity.
The last type of MOIAs is to embed another algorithm into

he immune system framework to improve the search ability
f the algorithm. Lin et al. [49] proposed a novel hybrid MOIA
y introducing the adaptive differential evolution as the search
perator to enhance the robustness of the algorithm in solving
arious complex MOPs. Wong et al. [50] presented a novel hybrid
mmune algorithm that integrated uniform crossover, nondomi-
ated sorting, and multi-point mutation to solve the constrained
OPs. Recently, Lin et al. [40] came up with a novel hybrid
volutionary immune algorithm that the entire clone population
s divided into different subpopulations, and each subpopulation
s evolved by different evolutionary operators to improve the
ntire search ability.
The proposed MOMFIA follows the antigen–antibody affinity

heory and the principle of clone selection, so it belongs to the
irst type of MOIAs. The proposed MOMFIA is the specific realiza-
ion of the immune algorithm under the multifactorial framework
o solve the MOMTO problems.

. The proposed MOMFIA

The framework of MOMFIA is shown in Fig. 2, K represents
he number of tasks to be optimized simultaneously. MOMFIA
tarts by initializing the population and setting some relevant
arameters. After that, according to multifactorial theory, the en-
ire population is divided into K subpopulations to solve different
OPs, and each subpopulation is used to solve a specific MOP.
hen, the antibodies with the highest affinity in each subpop-
lation are selected in the active population respectively. Next,
he DIS-based information transfer method is utilized to transfer
he valid information from other tasks. That is, individuals from
ther tasks that are conducive to the convergence of the target
ask are selected to form the transfer population, and the clone
opulation corresponding to the target task will mate not only
ith the nondominated population with the same skill factor
ut also with the individuals from transfer population to obtain
dvantageous genetic information. Then, the obtained offspring
re mutated by the hypermutation operator. To make a fair com-
arison with other multiobjective EMT algorithms, for all the
omparison algorithms, the simulated binary crossover (SBX) [51]
perator is used as the default recombination operator and the
olynomial mutation operator [52] is applied as the acquiescent
ypermutation operator. Of course, if MOMFIA is dedicated to
olving practical problems, in order to improve the efficiency
f the algorithm, any other advanced mutation operator can be
4

incorporated into the system. Finally, the elitist archive is used
to collect all the nondominated antibodies.

The initialization process of the population is shown in Algo-
rithm 1, all the decision variables are scaled to [Unilow , Uniup] to
form a unified decision space for facilitating knowledge trans-
fer between multiple heterogeneous optimization tasks, where
Unilow and Uniup represent the lower and the upper bounds of
the unified decision space, respectively. All the individuals are
evenly assigned to different tasks and distributed to the corre-
sponding skill factor, and the individual is only evaluated at its
own task to improve the evaluation efficiency. For each task, a
separate elitist archive namely nondominated population is kept
to store the nondominated antibodies of this subpopulation, and
the crowding distance is calculated only on these nondominated
individuals, reducing the amount of calculation.

3.1. Clonal selection strategy

The clonal selection strategy is inspired by the massive asexual
reproduction and mitosis of antibody cells in immunology. The
genes of the progeny cells are the same as those of the parent
cells, which can enhance the binding of the antigen. The MOIAs
place emphasis on the nondominated solutions and possess the
elite archiving strategy that all the nondominated solutions in the
current generation are preserved at the nondominated population
PN whose maximum capacity is the artificially set hyperparame-
ter ND. If the number of nondominated solutions in the current
generation exceeds ND, the ND nondominated individuals with
arger crowding distance are picked out. But in MOIAs, not all
he nondominated solutions are eligible to be the templates for
loning but the solutions with the largest crowding distance in PN
are qualified and will be stored in the active population PA whose
aximum capacity is the artificially set hyperparameter NA.
Then, the individuals in the PA are allocated the clone re-

ources that the individuals with larger crowding distances can
ave more offspring and cloned. The offspring obtained by cloning
re saved to the clone population PC for recombination and hy-

permutation. NC indicating the size of the PC is a hyperparameter
set according to the scale of the problem. The mathematical
model of proportional cloning is shown in formula (3).

PC =

NA⋃
i=1

{
hi

⨂
ai

}
, ai ∈ PA (3)

where the operator
⨂

indicates the clone operator and the
parameter hi denotes the number of clones of each solution ai in
PA. The value of hi can be calculated by the mathematical formula
4).

i =

⌈
NC ×

CD(ai)∑NA
j=1 CD(aj)

⌉
(4)

where CD(ai) represents the crowding distance of the individual
a . Because the crowding distance of the boundary solution is
i
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Fig. 2. The framework of proposed MOMFIA.
enerally set to infinity, this will encounter difficulties in cal-
ulating the number of clones. Therefore, the crowding distance
f the boundary solution is generally set to twice the maximum
rowding distance of the non-boundary solution.

.2. Information transfer based on DIS

In conventional MOMTO, the genetic information of individ-
als is usually exchanged by constantly utilizing the crossover
perator such as SBX in the randomly selected dimensions of the
wo randomly selected individuals from two tasks [22]. When
ndividuals from different tasks crossover, a local search is hap-
ening around the intersecting individuals, and the children will
nherit the skill factor, thereby generating solutions that may
e beneficial to the target task. However, the transfer strategy
ased on the random crossover will usually cause the trouble that
he transfer information is not suitable for the target task. For
xample, there is a solution that is originally close to the true PS
f the target task but steps away from the true PS after receiving
nformation from other tasks. This situation is called the negative
ransfer of knowledge between tasks. In general, the method that
andomly selecting individuals from different tasks to perform
enetic information transfer will cause a negative transfer.
Fig. 3 shows the two dimensions of the decision space of

three-task single objective optimization problem to show the
ffective and the negative knowledge transfer among tasks, re-
pectively. The offspring produced by the crossover of the target
ask and task one becomes far away from the optimal solution
f the target task. The information from task one does not have
5

a beneficial effect on the target task and negative knowledge
transfer occurs. However, the offspring obtained by using the
crossover operator between the target task and task two makes
the solution of the target task closer to the optimal solution, and
this kind of knowledge transfer is the ideal pursuit of multitasking
optimization.

To avoid the negative knowledge transfer, this paper proposes
a knowledge transfer strategy based on the dimensional informa-
tion. According to the iterative trend of the characteristic solution
in the target task, the proposed method selects tasks with similar
iteration trends of feature points in other tasks to hybridize. Since
the dimensions of all individuals are scaled to [0,1], the iterative
trend of the characteristic solution is determined based on the
Euclidean distance from the origin. To unambiguously reflect the
location characteristics of the nondominated population, from the
perspective of clustering, the center of the population cluster is
selected as the characteristic solution of the nondominated pop-
ulation for a specific task. The information transfer process based
on DIS is described as follows. First, the Euclidean distance of the
characteristic solution from the origin point in the target task is
recorded. Then, according to the variation trend of the distance
of the characteristic solution from the origin point in the next-
generation, other tasks that satisfy this trend are selected as the
candidate transfer tasks. After that, the characteristic solutions
of all candidate transfer tasks are extracted to form the transfer
population for the target task. During the evolution process, by
hybridizing the solution in the clone population of the target
task and the individuals in the transfer population, this beneficial
information can be transferred to the target population.
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Fig. 3. Positive and negative knowledge transfer for the target task.

Fig. 4 shows the proposed dimensional information-based
nowledge transfer process. In Fig. 4(a), the characteristic solu-
ion of the target task in t+1 generation is closer to the origin than
n the t generation considering d and d+1 dimensions, indicating
hat the optimal solution in the t+2 generation is more likely
o be closer to the origin. Then, the solutions in the candidate
ransfer population that are closer to the origin than the target
ask in t+1 generation are selected to hybridize. Similarly, in
ig. 4(b), suppose the characteristic solution of the target task in
+1 generation is far away from the origin than in the t generation
onsidering d and d+1 dimensions. The solutions in the candidate
ransfer population that are farther from the origin will be se-
ected. The pseudocode of establishing the transfer population for
he target task is shown in Algorithm 2.

To facilitate a concise and specific description of the proposed
imensional-based information transfer strategy, an SOP is taken
s an example but not a MOP. The distance described is the
uclidean distance between the solution and the optimal point,
ot the distance between the solution and the PS in the decision
ariable space. This is because the purpose of MTO is to utilize the
nformation of other tasks to promote the convergence of the tar-
et task but maintaining the diversity of the population is not the
ocus of MTO. Of course, our algorithm also considers diversity,
6

but it depends on diversity maintenance ability of MOIAs itself,
rather than setting a diversity enhancement strategy for MOMTO
alone.

3.3. Recombination and hypermutation

The proposed MOMFIA uses the same recombination and hy-
permutation operators as the contrast MOMTO algorithms for a
fair comparison to highlight the advantages of MOIAs and the ef-
ficiency of the proposed information transfer method for solving
MOMTO problems. The proposed MOMFIA utilizes the SBX [51]
as the crossover operator for recombination and the polyno-
mial mutation [52] as the mutation operator for hypermutation.
However, since the transfer population is selected based on the
information of characteristic solutions on d and d+1 dimensions,
SBX and polynomial mutation will only be performed on the
corresponding dimension at each time. PC = (c1, c2, . . . , c|PC |)
enotes the clone population from applying proportional cloning
o the active population PA, PU represents the union population
f the PA and the transfer population PT . Then the recombination
perator R on the clone population PC is defined as formula (5).

(c1 + c2 + · · · + c|PC |) = crossover(c1, PU ) + crossover(c2, PU )

+ · · · + crossover(c|PC |, PU ) (5)

here crossover (ci, PU ), i = {1, 2, , | PC |} denotes an indi-
idual randomly selected from the PU is hybridized with the
lone individual ci. After that, hypermutation is performed on the
esult of the recombination operator. If PR = (r1, r2, . . . , r|PR|)
s the clone population after performing recombination process,
hen the offspring population after hypermutation is expressed as
ormula (6).

(r1+r2+· · ·+r|PR|) = mutate(r1)+mutate(r2)+· · ·+mutate(r|PR|)

(6)

.4. Elitist archive update

After recombination and hypermutation, the beneficial infor-
ation transferred from other tasks has been passed into the
volved clone population. Then, for each task, after calculat-
ng the objective function values of all the individuals in the
volved clone population according to their own correspond-
ng skill factors, these individuals are merged with the current
ondominated population of the task to generate a new popu-
ation PQ . Afterward, nondominated sorting is performed to PQ
o generate a new generation of nondominated population. If the
ermination condition is met, the final nondominated population
s output as the result, otherwise, the clonal selection operator is
xecuted for the nondominated population and starts a new cycle.
ote that unlike other MOEAs, MOIA is based on elitism strategy
nd archive mechanism, so the number of solutions in the non-
ominated population and the active population is not fixed, but
nly the upper limits of these populations are determined. The
ey point is that the MOIA updates the archive constantly and
nly selects the nondominated solutions as the parents to en-
ure very efficient convergence performance just utilizing a small
opulation. This is the greatest strength of MOMFIA compared to
ther MOMTO algorithms.

.5. The complete MOMFIA

Algorithm 3 summarizes the MOMFIA framework. First, all
he individuals are initialized randomly in the unified decision
pace and equally assigned to K tasks, and each subpopulation
s assigned a skill factor corresponding to the task, and the in-
ividuals are evaluated by the objective functions corresponding
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o the skill factors. The detailed description of initialization is
hown in Algorithm 1. Next, perform nondominated sorting to
ach subpopulation separately, save nondominated solutions into
he nondominated population PN , and select individuals with
arger crowding distance in PN to store as active solutions in the
active population PA. The proportional cloning is executed to the
PA according to the crowding distance of the solution as shown
in formula (3). Then, the characteristic solutions with the same
iterative trend are selected according to the DIS from other tasks
to form the transfer population PT , as shown in Algorithm 2.
hen, the clone population PC of the target task is recombined
ccording to the formula (5) and is hypermutated according to
he formula (6). After that, the evolved clone population PC ’ is
valuated according to the objective functions corresponding to
he skill factor and then merged with the nondominated popu-
ation PN to generate union population PQ . Finally, the archive
N is updated by nondominated sorting performed to the PQ . If
he program termination condition is reached, the final nondom-
nated population PN is output. Otherwise, continue to the next
teration.

3.6. Complexity analysis

In this section, the computational complexity of one genera-
ion of the proposed MOMFIA is discussed. Suppose d denotes the
otal number of the dimensions of the unified decision space, N
D l

7

indicates the population size of the nondominated population, NC
expresses the population size of the clone population, m indicates
the total number of the objective functions. In the environment
selection, the time complexities of the nondominated sorting
is O(m(ND + NC )2), the calculating of the crowding distance is
O(m(ND + NC )log(ND + NC )) and the updating of the archive
ctive population is O(mNDlogND), respectively. The time com-
lexity of the information transfer based on DIS is O(dND). The

time complexity of the cloning is O(NC ), and the time complex-
ity of the recombination and hypermutation is O(dNC ). Overall,
the total computational complexity of MOMFIA is O(m(ND +

C )2) + O(m(ND + NC )log(ND + NC )) + O(mNDlogND) + O(dND) +

(NC ) + O(dNC ). According to the operation rules of symbol O,
he time complexity of the proposed MOMFIA can be simplified
s O(m(ND + NC )2).

. Experiments

In this section, the proposed MOMFIA is compared with the
lassic MOEA NSGA-II and the representative MOIA NNIA and
he well-known multiobjective EMT algorithmMOMFEA. The per-
ormance of MOMFIA is synthetically evaluated by the classical
OMTO and the CEC2019 MOMaTO test suites.

.1. Test suites introduction

The performances of the proposed MOMFIA and the compari-
on algorithms are evaluated by the classical MOMTO benchmark
est suite [27] and the MOMaTO benchmark test suite namely
ATP presented recently in the CEC2019 many-task optimization
ompetition [28].
MTO believes that the improvement in the overall search ef-

iciency of the EMT algorithms brought about by the information
ransfer is mainly affected by the global optimum intersection
egree and similarity of the fitness landscapes of the simultane-
usly optimized tasks. It is worth noting that there is not a single
lobal optimal solution in MOP. And the necessary and sufficient
ondition for obtaining Pareto optimal solutions on MOP is that
he constructor function q(x) takes the global optimum [27].

Therefore, in the MOMTO problems, the intersection degree
f the global optimums refers to that of the global optimal so-

utions of the MOPs’ constructor functions q(x)s. If the global
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Table 1
Parameters setting for the experiments.

Parameter MOMFIA MOMFEA NSGA-II NNIA

Population size for all the tasks in
the classical MOMTO test suite

200 200 200 200

Population size for all the tasks in
the MOMaTO test suite

500 500 2500 2500

Population size of active population
for all tasks in the classical
MOMTO test suite

80 – – 80

Population size of clone population
for all tasks in the classical
MOMTO test suite

200 – – 200

Population size of active population
for all tasks in the MOMaTO test
suite

100 – – 1000

Population size of clone population
for all tasks in the MOMaTO test
suite

500 – – 2500

Maximum number of evaluations
for all the tasks in the classical
MOMTO test suite

200,000 200,000 200,000 200,000

Maximum number of evaluations
for all the tasks in the MOMaTO
test suite

500,000 500,000 500,000 500,000

Random mating probability – 0.3 0.3 -

Mutation probability 1/D 1/D 1/D 1/D

Crossover probability 0.9 0.9 0.9 0.9

Distribution index of mutation 20 20 20 20

Distribution index of crossover 20 20 20 20
optimums of two tasks are the same in all dimensions, namely
complete intersection (CI), and the information transfer between
tasks can bring the greatest improvement to the overall conver-
gence performance. If the global optimal solutions are different
in all dimensions, called the no intersection (NI). The information
transfer can hardly contribute any gain to the overall convergence
but will increase the difficulty of optimization and cause negative
transfer. The other cases are called partial intersection (PI). The
similarity of the fitness landscapes refers to the similarity of
the objective function values corresponding to the same decision
vector on q(x)s attached to different tasks. The more similar the
fitness landscapes are, the more the knowledge learned from one
task can assist to optimize another task. To calculate the simi-
larities between the fitness landscapes of the constructor q(x)s,
,000,000 points are randomly sampled in the unified decision
pace, then the Spearman’s rank correlation coefficients between
(x)s are calculated as the similarities. 1/3 and 2/3 will be used as
he cutoff values for high similarity (HS), medium similarity (MS),
nd low similarity (LS) respectively. According to the above two
lassification tactics, nine continuous MOMTO benchmark sub-
roblems are proposed, each sub-problem is composed of two
OP tasks. The detailed description of the classical MTO test suite

s shown in reference [27].
In the MOMaTO benchmark test suite MATP which has six

ub-suites, each sub-suite contains 50 tasks that have different
Ss caused by various shift vectors and diverse rotation matrixes,
nd each task is a two-objective optimization problem. The MATP
est set can effectively evaluate the information transfer mech-
nism of multiobjective EMT algorithms. With the increase in
he number of simultaneous optimization tasks, the difficulty of
nformation transfer greatly increases. If the information from
ther tasks is not effectively screened, invalid information will
onsume computing resources and evaluation times of the target
ask as noise and even hinder the algorithm’s convergence on the
8

target task. Detailed information of the MATP can be found in the
literature [28].

4.2. Compared algorithms

The proposed MOMFIA will be compared performance with
the well-known multiobjective EMT algorithmMOMFEA, the clas-
sical single-task MOEAs, NSGA-II and NNIA. The MOMFEA [22]
introduced EMT theory into the MOPs for the first time and is
the originator of the MOMTO. The MOMFEA inherits the def-
initions of the skill factor and the scalar fitness in MFEA, ex-
pands the concept of the factorial rank, and embeds the NSGA-
II [9] to be the evolutionary operator to execute nondominated
sorting and calculate the crowding distance for solving multi-
ple MOPs simultaneously. Limited speaking, MOMFEA can be
regarded as an improved NSGA-II using multitasking theory for
solving MOMTO problems. By comparing the performances of
MOMFEA and NSGA-II in solving the same problem, it can prove
the advantages of the multiobjective EMT algorithms in solving
the MOMTO problems, so NSGA-II will also be adopted for a
comparison algorithm. NNIA [34] is the first real-valued encod-
ing MOIA and contributes a lot to the later MOIAs. The clonal
selection operator in the proposed MOMFIA also inherits from
the NNIA, so NNIA is also adopted as one of the comparison
algorithms.

4.3. Parameter settings

For a fair comparison, in the classical MOMTO test suite [27],
the population sizes of the multiobjective EMT algorithms MOM-
FEA and MOMFIA are both set as 200, and the maximum eval-
uation times are both set as 200,000, but for the conventional
single-task MOEAs NSGA-II and NNIA, the population size for
each task is set as 100 and the maximum number of evaluations
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Fig. 5. The average IGD with the number of evaluations for MOMFEA, NSGA-II, NNIA, and MOMFIA on the MOMTO benchmark test suite.
for each task is set as 100,000. In the MOMaTO test suite [28],
the total population sizes of the multiobjective EMT algorithms
MOMFEA and MOMFIA are both set as 500, but for the con-
ventional single-task MOEAs NSGA-II and NNIA, the population
size for each task is set as 50. The maximum number of fitness
evaluations for a single task is set as 10000. The settings of other
parameters are shown in Table 1.
9

4.4. Experimental results

The average IGD values and standard deviations obtained by
each algorithm 20 independent runs at the classical MOMTO
benchmark test suite are shown in Table 2. The best result of each
sub-problem is emphasized in bold. In addition, the Wilcoxon
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Table 2
The average and standard deviation of the IGD obtained by MOMFIA, MOMFEA, NSGA-II and NNIA on the classical
MOMTO benchmark suite for 20 independent runs. The better average IGD values are highlighted in bold.

Problem Task MOMFIA MOMFEA NSGA-II NNIA

CIHS T1 2.745E−4
(9.695E−5)

3.741E−4 (-)
(7.072E−5)

1.972E−3 (-)
(4.081E−4)

1.071E−3 (-)
(3.338E−4)

T2 2.301E−3
(2.908E−4)

2.826E−3 (-)
(3.004E−4)

4.362E−3 (-)
(5.512E−4)

4.347E−3 (-)
(9.167E−4)

CIMS T1 5.758E−2
(6.957E−2)

6.592E−2 (-)
(6.361E−2)

1.316E−1 (-)
(7.207E−2)

7.774E−2 (-)
(6.197E−2)

T2 2.468E−2
(8.268E−3)

7.265E−3 (+)
(9.944E−3)

2.153E−2 (+)
(2.071E−2)

4.967E−2 (-)
(3.532E−2)

CILS T1 1.457E−4
(1.013E−5)

3.105E−4 (-)
(3.805E−5)

2.862E−1 (-)
(8.001E−2)

4.257E−1 (-)
(8.480E−2)

T2 1.747E−4
(1.004E−5)

1.936E−4 (-)
(5.311E−6)

2.041E−4 (-)
(8.709E−6)

2.071E−4 (-)
(7.255E−6)

PIHS T1 3.329E−4
(4.620E−5)

7.214E−4 (-)
(4.746E−4)

1.108E−3 (-)
(1.788E−4)

9.642E−4 (-)
(1.880E−4)

T2 1.354E−2
(5.574E−3)

3.526E−2 (-)
(1.161E−2)

6.638E−2 (-)
(2.161E−2)

5.665E−2 (-)
(1.801E−2)

PIMS T1 1.764E−3
(4.862E−4)

3.415E−3 (-)
(1.232E−3)

4.966E−3 (-)
(1.879E−3)

3.832E−3 (-)
(1.614E−3)

T2 1.154E1
(3.443E0)

1.484E1 (-)
(3.982E0)

1.578E1 (-)
(1.741E0)

4.982E1 (-)
(1.638E1)

PILS T1 1.966E−4
(1.031E−4)

3.225E−4 (-)
(9.422E−5)

3.167E−4 (-)
(1.01E−4)

2.228E−4 (-)
(1.008E−4)

T2 1.016E−2
(3.248E−3)

1.143E−2 (-)
(2.686E−3)

6.346E−1 (-)
(4.256E−4)

6.338E−1 (-)
(6.044E−4)

NIHS T1 1.527E0
(1.072E−2)

1.543E0 (-)
(8.461E−3)

6.897E0 (-)
(2.289E0)

5.957E0 (-)
(1.281E0)

T2 2.359E−4
(2.888E−5)

4.265E−4 (-)
(7.567E−5)

8.419E−4 (-)
(2.192E−4)

7.108E−4 (-)
(1.332E−4)

NIMS T1 1.480E−1
(1.311E−1)

3.401E−1 (-)
(2.538E−1)

3.771E−1 (-)
(3.246E−1)

5.245E−1 (-)
(3.339E−1)

T2 1.247E−2
(3.634E−3)

1.909E−2 (-)
(1.795E−2)

7.479E−2 (-)
(5.472E−2)

2.886E−2 (-)
(1.223E−2)

NILS T1 7.573E−4
(4.169E−5)

8.445E−4 (-)
(5.709E−5)

8.248E−4 (-)
(5.333E−5)

7.815E−4 (-)
(3.235E−5)

T2 6.415E−1
(1.037E−4)

6.431E−1 (-)
(3.498E−4)

6.421E−1 (-)
(2.826E−4)

6.418E−1 (-)
(2.117E−4)
rank sum test at the 95% confidence level is applied for the ex-
perimental results to compare the proposed MOMFIA with other
comparison algorithms, the significantly better and significantly
worse using + and - to represent respectively.

As shown in Table 2, from the average IGD values, MOMFIA
s superior to the state-of-the-art MOIA NNIA in all the sub-
roblems in the classical MOMTO test suite. Compared to the
lassic MOEA NSGA-II, MOMFIA performs better in 17 out of
he 18 sub-problems. And MOMFIA surpasses the well-known
ultiobjective EMT algorithm MOMFEA in 17 out of 18 sub-
roblems. The above statistical results prove the competitive-
ess and potential of MOMFIA in solving MOMTO problems.
t is worth emphasizing that in most low-to-medium similar-
ty test sub-problems such as NILS, NIMS, PILS, PIMS, and CILS,
he performance of MOMFIA is better than that of MOMFEA,
hich indicates that MOMFIA can overcome the negative transfer
aused by the information exchange with the dissimilar tasks and
aintain the advantages gained in the target task. It mainly due

o that the proposed DIS-based information transfer strategy is
ore purposeful and is able to effectively screen the transferred
nowledge, can transfer effective information in other tasks, and
hus avoids negative transfer. Since MOMFEA applies the random
rossover mechanism as the transfer knowledge method between
asks, it cannot handle the interference to the target task caused
10
by the negative transfer. Multiobjective EMT algorithms are es-
sentially an improvement of MOEA by using information transfer
strategies, so they will still be more or less affected by the original
MOEA. Comparing NNIA and NSGA-II, NNIA performs poorly on
CIMS-T2, CILS, PIMS-T2, and NIMS-T1. Except that MOMFIA is
worse than MOMFEA in CIMS-T2, MOMFIA performs better than
MOMFEA in other test problems. This indirectly proves that the
proposed MOMFIA uses the mechanism of information transfer to
learn effective information from other tasks, and overcomes the
shortcomings of immune algorithms in optimizing CILS, PIMS-T2,
and NIMS-T1 problems.

Fig. 5 presents the iterative curves of the average IGD of
the proposed MOMFIA, MOMFEA, NSGA-II, and NNIA after 20
independent runs on the classical MOMTO benchmark test suite.
It should be noted that the recording starts from the 2000th
evaluations, not from the initialization of the population to show
the changes in IGD more clearly. It can be seen that the proposed
MOMFIA has good convergence ability and can obtain relatively
low IGD values at an early stage. This is due to the fact that the
immune algorithm can generate a large number of clones of non-
dominated solutions in the iteration to perform a more detailed
local search around them. At the later stage of the iteration, the
IGD of many algorithms tends to a stable state, which indicates
that the solutions in the population are nondominated with each
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Table 3
The average and standard deviation of the IGD obtained by MOMFIA, MOMFEA, NSGA-II and NNIA on the MOMaTO
benchmark test suite for 20 independent runs. The better average IGD values are highlighted in bold.

Task MOMFIA MOMFEA NSGA-II NNIA

T1 2.274E−1
(5.389E−2)

2.244E1 (-)
(4.882E0)

3.527E0 (-)
(9.596E−1)

9.201E−1 (-)
(2.191E−1)

T2 2.231E−1
(7.213E−2)

2.611E1 (-)
(4.047E0)

3.973E0 (-)
(1.072E0)

8.638E−1 (-)
(2.254E−1)

T3 2.257E−1
(7.096E−2)

2.105E1 (-)
(5.706E0)

3.512E0 (-)
(1.171E0)

1.135E0 (-)
(2.247E−1)

T4 2.487E−1
(7.224E−2)

1.761E1 (-)
(2.872E0)

4.009E0 (-)
(1.043E0)

8.887E−1 (-)
(2.129E−1)

T5 2.787E−1
(7.591E−2)

2.567E1 (-)
(4.753E0)

3.711E0 (-)
(7.204E−1)

7.626E−1 (-)
(2.148E−1)

T6 2.615E−1
(4.989E−2)

2.326E1 (-)
(3.234E0)

3.962E0 (-)
(5.735E−1)

1.033E0 (-)
(3.243E−1)

T7 2.384E−1
(4.785E−2)

1.599E1 (-)
(3.062E0)

2.834E0 (-)
(5.978E−1)

9.091E−1 (-)
(2.856E−1)

T8 2.436E−1
(8.447E−2)

2.038E1 (-)
(1.614E0)

3.103E0 (-)
(5.798E−1)

1.103E0 (-)
(3.989E−1)

T9 2.598E−1
(7.412E−2)

1.627E1 (-)
(5.054E0)

3.766E0 (-)
(1.055E0)

8.114E−1 (-)
(2.371E−1)

T10 2.496E−1
(6.966E−2)

2.084E1 (-)
(5.824E0)

3.714E0 (-)
(7.560E−1)

9.499E−1 (-)
(3.488E−1)

T11 2.125E−1
(3.725E−2)

1.823E1 (-)
(3.114E0)

3.275E0 (-)
(9.053E−1)

9.832E−1 (-)
(3.694E−1)

T12 2.423E−1
(7.989E−2)

1.792E1 (-)
(2.801E0)

3.717E0 (-)
(7.634E−1)

9.332E−1 (-)
(2.919E−1)

T13 2.178E−1
(5.679E−2)

1.602E1 (-)
(2.962E0)

3.763E0 (-)
(9.369E−1)

8.234E−1 (-)
(1.812E−1)

T14 2.348E−1
(6.948E−2)

1.715E1 (-)
(1.981E0)

3.432E0 (-)
(6.908E−1)

9.103E−1 (-)
(2.642E−1)

T15 2.414E−1
(7.915E−2)

2.693E1 (-)
(1.135E1)

3.620E0 (-)
(9.981E−1)

9.389E−1 (-)
(2.352E−1)

T16 2.681E−1
(9.327E−2)

1.842E1 (-)
(6.057E0)

3.723E0 (-)
(7.426E−1)

1.075E0 (-)
(3.202E−1)

T17 2.251E−1
(5.832E−2)

2.545E1 (-)
(3.618E0)

3.243E0 (-)
(7.174E−1)

7.739E−1 (-)
(1.981E−1)

T18 2.649E−1
(5.919E−2)

1.984E1 (-)
(6.158E0)

3.382E0 (-)
(6.117E−1)

8.656E−1 (-)
(3.543E−1)

T19 2.126E−1
(8.912E−2)

2.625E1 (-)
(5.563E0)

3.667E0 (-)
(8.006E−1)

1.018E0 (-)
(2.344E−1)

T20 2.517E−1
(6.949E−2)

1.917E1 (-)
(5.036E0)

3.825E0 (-)
(1.261E0)

8.397E−1 (-)
(1.974E−1)

T21 2.579E−1
(1.050E−1)

1.617E1 (-)
(3.179E0)

3.288E0 (-)
(8.473E−1)

9.436E−1 (-)
(3.157E−1)

T22 2.226E−1
(5.685E−2)

2.229E1 (-)
(3.923E0)

3.725E0 (-)
(1.092E0)

7.525E−1 (-)
(1.363E−1)

T23 2.249E−1
(4.906E−2)

1.832E1 (-)
(4.887E0)

3.434E0 (-)
(7.831E−1)

8.203E−1 (-)
(1.883E−1)

T24 2.521E−1
(9.256E−2)

2.113E1 (-)
(2.667E0)

3.335E0 (-)
(1.085E0)

9.397E−1 (-)
(3.349E−1)

T25 2.368E−1
(4.237E−2)

1.924E1 (-)
(5.692E0)

3.591E0 (-)
(1.218E0)

9.493E−1 (-)
(3.263E−1)

T26 2.458E−1
(5.191E−2)

1.741E1 (-)
(3.092E0)

3.298E0 (-)
(8.234E−1)

8.807E−1 (-)
(1.902E−1)

T27 2.352E−1
(3.659E−2)

2.191E1 (-)
(3.488E0)

3.408E0 (-)
(4.727E−1)

8.889E−1 (-)
(1.345E−1)

T28 2.736E−1
(9.808E−2)

2.233E1 (-)
(4.696E0)

3.323E0 (-)
(6.420E−1)

9.338E−1 (-)
(2.395E−1)

T29 2.501E−1
(8.628E−2)

1.759E1 (-)
(3.011E0)

4.215E0 (-)
(1.198E0)

9.855E−1 (-)
(3.222E−1)

(continued on next page)
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Table 3 (continued).
Task MOMFIA MOMFEA NSGA-II NNIA

T30 2.136E−1
(5.174E−2)

2.191E1 (-)
(4.005E0)

3.466E0 (-)
(7.701E−1)

9.289E−1 (-)
(3.779E−1)

T31 2.534E−1
(5.827E−2)

2.299E1 (-)
(5.945E0)

3.158E0 (-)
(1.093E0)

9.261E−1 (-)
(3.029E−1)

T32 2.333E−1
(6.921E−2)

2.639E1 (-)
(5.464E0)

3.329E0 (-)
(7.609E−1)

1.109E0 (-)
(3.825E−1)

T33 2.54E−1
(7.045E−2)

2.039E1 (-)
(3.409E0)

3.262E0 (-)
(8.666E−1)

1.006E0 (-)
(2.655E−1)

T34 2.388E−1
(6.824E−2)

2.302E1 (-)
(5.073E0)

3.496E0 (-)
(1.004E0)

8.394E−1 (-)
(3.339E−1)

T35 2.647E−1
(6.423E−2)

2.189E1 (-)
(3.326E0)

3.601E0 (-)
(3.986E−1)

8.438E−1 (-)
(2.665E−1)

T36 1.969E−1
(4.807E−2)

2.149E1 (-)
(6.735E0)

3.323E0 (-)
(5.565E−1)

8.089E−1 (-)
(2.364E−1)

T37 2.382E−1
(6.917E−2)

1.824E1 (-)
(5.334E0)

3.705E0 (-)
(9.545E−1)

1.028E0 (-)
(3.213E−1)

T38 2.435E−1
(3.504E−2)

2.007E1 (-)
(4.448E0)

3.133E0 (-)
(7.443E−1)

8.626E−1 (-)
(2.279E−1)

T39 2.629E−1
(7.344E−2)

2.014E1 (-)
(2.413E0)

3.408E0 (-)
(5.108E−1)

8.503E−1 (-)
(1.826E−1)

T40 2.461E−1
(5.247E−2)

2.627E2 (-)
(7.632E1)

3.272E0 (-)
(7.952E−1)

8.156E−1 (-)
(3.218E−1)

T41 2.213E−1
(4.601E−2)

2.027E1 (-)
(3.849E0)

3.481E0 (-)
(7.556E−1)

9.725E−1 (-)
(2.428E−1)

T42 2.816E−1
(9.769E−2)

1.989E1 (-)
(1.844E0)

3.666E0 (-)
(8.947E−1)

9.964E−1 (-)
(1.696E−1)

T43 2.562E−1
(5.819E−2)

1.928E1 (-)
(2.246E0)

3.776E0 (-)
(6.265E−1)

1.117E0 (-)
(3.643E−1)

T44 2.378E−1
(5.082E−2)

2.026E1 (-)
(3.643E0)

3.634E0 (-)
(8.074E−1)

8.958E−1 (-)
(3.627E−1)

T45 2.439E−1
(7.754E−2)

2.578E1 (-)
(5.856E0)

3.679E0 (-)
(8.61E−1)

9.939E−1 (-)
(1.833E−1)

T46 2.448E−1
(5.219E−2)

2.091E1 (-)
(6.478E0)

3.625E0 (-)
(5.984E−1)

1.035E0 (-)
(3.108E−1)

T47 2.857E−1
(6.626E−2)

2.298E1 (-)
(4.574E0)

3.053E0 (-)
(5.894E−1)

8.534E−1 (-)
(2.842E−1)

T48 2.224E−1
(4.807E−2)

1.659E1 (-)
(3.491E0)

3.361E0 (-)
(5.402E−1)

9.740E−1 (-)
(2.695E−1)

T49 2.272E−1
(8.514E−2)

2.518E1 (-)
(6.206E0)

3.495E0 (-)
(7.725E−1)

8.614E−1 (-)
(1.526E−1)

T50 2.676E−1
(9.157E−2)

2.232E1 (-)
(3.817E0)

3.722E0 (-)
(6.725E−1)

8.868E−1 (-)
(2.429E−1)
other, and it is difficult to find a superior solution is able to
replace the nondominated solution in the population through
evolution. MOMFIA focuses on the area with the largest crowding
distance in the non-dominated solution. Even at the later stage of
the iteration, MOMFIA can still improve the diversity of the popu-
lation by continuously homogenizing the nondominated solutions
which lead IGD to decline continuously. In all the test problems,
MOMFIA always on top in terms of IGD value within 20,000
evaluations. Besides, the proposed MOMFIA converges faster than
MOMFEA NSGA-II, and NNIA in most problems.

In this paper, the performance of the proposed MOMFIA is
ompared with other algorithms in the first subset of the MATP
est suite, namely MATP-1. The average IGD values and standard
eviations obtained by each algorithm 20 independent runs at the
OMaTO benchmark test suite are shown in Table 3. The best

esult of each sub-problem is emphasized in bold. In addition, the
ilcoxon rank sum test at the 95% confidence level is applied

or the experimental results to compare the proposed MOMFIA
ith other comparison algorithms, the significantly better and
ignificantly worse using + and - to represent respectively.
As shown in Table 3, from the perspective of the average

GD value, MOMFIA shows obvious advantages in all the tasks in
he MOMaTO benchmark test problem MATP-1. Compared with
he state-of-the-art MOEA NSGA-II, NNIA, and the conventional
ultiobjective EMT algorithm MOMFEA. In the four comparison
lgorithms, MOMFEA performs significantly worse in MOMaTO
roblems. This is because when the number of tasks increases,
ndividuals randomly selected from other tasks may not be suit-

ble for the target task, and the information they carry does not
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have a beneficial effect on the target task. The hybridizations
of individuals from different tasks do not make the target task
better but waste valuable evaluation times. There is an obvious
negative transfer situation here, that is, the algorithm under
the EMT framework is not as effective as the basic single-task
MOEA. For example, MOMFEA which is the improved NSGA-II for
evolutionary multitasking is obviously inferior to NSGA-II here.
The proposed MOMFIA has achieved better results in the pro-
cessing of MOMaTO, which indicates that the proposed DIS-based
information transfer strategy can effectively screen effective in-
formation for the target task, effectively reduce negative transfer,
and promote the convergence of target task to the true PF.

5. Conclusion

In this paper, a novel dimensional information based multi-
objective multifactorial algorithm MOMFIA is proposed to solve
MOMTO problems. For each task, the clone population selects
individuals from the other tasks that have similar iteration trends
of feature points to hybridize. The proposed information transfer
method can effectively reduce the negative information trans-
fer and improve the efficiency of knowledge transfer compared
with the conventional randomly selection based implicit transfer.
The MOMFIA can obtain well-converged and well-diversified PFs
for different tasks simultaneously. The performance is compared
against several different state-of-the-art approaches including
MOMFEA, NNIA, and NSGA-II on the classical MOMTO and the

MOMaTO benchmark test suites. The experimental results show
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hat the proposed MOMFIA provides better IGD measures on nine
OMTO problems and MOMaTO benchmark problems. Neverthe-

ess, there are still some issues that can be further studied and
mproved in future work. For example, on each dimension of the
ecision variable, the DIS-based information transfer method will
elect the appropriate solutions for information transfer. With
he increase of variable dimensions, this method will introduce
large amount of computation. When solving large-scale opti-
ization problems, the dimensionality reduction and refinement
f decision variables methods can be applied to the information
ransfer method to improve the efficiency of the algorithm. In
ddition, considering the complex optimization problems, the
lgorithm can be improved into the hybrid MOIA, and a variety
f evolutionary operators should be introduced to enhance the
earch capability.
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