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Abstract—In recent years, numerous many-objective
evolutionary algorithms (MaOEAs) have been developed
to search for well-diversified and well-converged Pareto optimal
solutions for high-dimensional many-objective optimization
problems (MaOPs). However, existing MaOEAs have to tackle
some daunting challenges, including the emergence of dominance
resistance solutions, effective diversity preservation scheme,
management of a large population size, extremely high com-
putational complexity, sensitivity to the shape of Pareto front
(PF), and overly relying on high-quality reference points. In this
article, we present an evolution strategy (ES) for solving MaOPs,
called MaOES, which can solve these challenges efficiently and
effectively. Inspired by the Vector Equilibrium phenomenon in
magnetic fields, isotropic magnetic particles would automatically
repel from each other, keep the uniform distance from the
nearest neighbors, and extend the entire magnetic fields as far
as possible, all at the same time. In the proposed algorithm, an
efficient self-adaptive Precision-Controllable Mutation operator
is designed for individuals to explore and exploit the decision
space. In addition, the Maximum Extension Distance strategy,
which emulates the isotropic magnetic particle behavior in
a magnetic field, is developed to guide individuals to keep
uniform distance and extension to approximate the entire
PF. As a result, the MaOES can obtain a well-converged and
well-diversified PF with much less population size and far lower
computational complexity. The larger the number of individuals,
the sharper the contour the resulting approximate PF will be.
Finally, the proposed algorithm is evaluated by the scalable
MaOPs test suites on DTLZ and WFG. The experimental
results have been demonstrated to provide a competitive and
oftentimes better performance when compared against some
chosen state-of-the-art MaOEAs.
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I. INTRODUCTION

MANY real-world problems involve multiple conflict-
ing objectives that need to be optimized simultane-

ously. In the last decades, some of the carefully crafted
multiobjective evolutionary algorithms (MOEAs), such as
NSGA-II [1] and SPEA2 [2], have shown an extraordinary
ability to search for a set of well-converged and well-
diversified nondominated solutions in two- or three-objective
optimization problems. However, these effective MOEAs fail
in tackling real-world applications involving four or many
more objectives optimization, such as engineering design [3],
air traffic control [4], auto controller [5], and nursing staff
scheduling [6].

In recent years, some state-of-the-art designs on many-
objective evolutionary algorithms (MaOEAs) have been
proposed for solving many-objective optimization problems
(MaOPs), including improved diversity-based approaches
(e.g., GrEA [7]), enhanced dominance-based approaches (e.g.,
FD-NSGA-II [8]), decomposition-based approaches (e.g.,
NSGA-III [9], MOEA/DD [10]), indicator-based approaches
(e.g., HypE [11]), objective reduction-based approaches
(e.g., PCSEA [12]), and evolution strategy (ES)-based
approaches (e.g., S3-CMA-ES [13]). However, when the num-
ber of objectives increases, an enormously large number of
solutions becomes nondominated. These dominance resistance
solutions seriously weaken the selection pressure toward the
Pareto front (PF), and the convergence ability of most of the
MaOEAs quickly deteriorates. In order to maintain a set of
well-diversified solutions which approximates the entire PF,
some of the MaOEAs need to increase the number of refer-
ence points or the number of search directions, or keep the
extreme solutions to extend the boundary. However, without
any priori PF shape knowledge, it is very difficult to gener-
ate high-quality reference solutions or identify the boundary
solutions for high-dimensional MaOPs.

ES has been proven for years to be a simple, yet powerful
approach for the optimization problems in particular because
of its self-adaptation mechanisms [14], [15]. The ES has been
widely applied for solving various multiobjective optimization
problems. In order to obtain well-diversified solutions, many
diversity approaches have been well integrated into ES, such
as niching [16], crossover-like mutation [17], clustering [18],
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and archiving [19], [20], to name a few. However, most of
these designs still need to maintain a large population size for
sorting, selection, and reproduction. In addition, the excessive
success of the genetic algorithms (GAs) has inadvertently led
to the lost attention on the powerful ES.

In this article, we propose a novel ES for solving MaOPs,
called MaOES. In 1917, Richard Buckminster Fuller dis-
covered the significance of vector symmetry and called it
the Vector Equilibrium in 1940 [21], [22]. Inspired by the
Vector Equilibrium phenomenon in magnetic fields, isotropic
magnetic particles would repel each other and extend to the
entire magnetic fields as far as possible and automatically.
Under this spirit, the proposed MaOES can obtain a well-
converged and well-diversified PF with much less population
size and far lower computational complexity. The larger the
number of individuals, the sharper the contour the result-
ing approximate PF will be. The proposed algorithm uses
mutation and selection for individual self-adaptation. The
Precision Controllable Mutation operator is designed for indi-
viduals to explore and exploit the decision space efficiently.
The Maximum Extension Distance strategy is tailored to
guide the individuals to keep uniform distance among particles
in the population and to facilitate the extension to approximate
the entire PF automatically.

The remaining sections complete the presentation of this
article. Section II provides a comprehensive analysis of the
existing MaOEAs. The proposed ES for MaOPs and MaOES
is then detailed in Section III. In Section IV, we elaborate on
the experimental results given selected benchmark test prob-
lems. Finally, conclusions are drawn in Section V along with
pertinent observations that are identified.

II. LITERATURE REVIEW

The mathematical model of an MaOP can be formulated as
follows:

min f (x) = min
[
f1(x), f2(x), . . . , fM(x)

]T
, f (x) ∈ RM (1)

where x = [x1, x2, . . . , xN]T ∈ �, and x consists of N decision
variables, � is the search space. f (x) consists of M objective
functions, fi (x), i = 1, . . . , M and M > 3. RM denotes the
objective space.

In recent years, a number of novel and effective
algorithms for MaOPs have been proposed, such as
particle swarm optimization with a balanceable fitness
estimation for many-objective optimization [23], many-
objective optimization using differential evolution with
variable-wise mutation restriction [24], MaOEA using a one-
by-one selection strategy [25], and set-based GA for interval
many-objective optimization problems [26]. Existing strate-
gies of MaOEAs can be broadly classified into several different
categories, including improved diversity approaches, enhanced
dominance approaches, decomposition-based approaches,
indicator-based approaches, objective reduction approaches,
and ES-based approaches.

A. Existing Strategies for MaOEAs

1) Improved Dominance or Diversity Approaches: The
enhanced dominance approaches, such as FD-NSGA-II [8]

and ε-MOEA [27], replace the exact Pareto dominance with
some relax dominance definitions, which can enhance the
selection pressure toward the PF.

The improved diversity approaches, including GrEA [7] and
SPEA2 + SDE [28], attempt to improve the performance
of MaOEAs by reducing the adverse impact of diversity
maintenance.

However, the delicate balance between convergence and
diversity is indeed difficult to maintain throughout the evolu-
tion process for these MaOEAs. Excessive aggressive selection
pressure may result in degraded diversity maintenance. On the
other hand, excessive diversity selection may deteriorate the
convergence performance.

2) Decomposition-Based Approaches: The decomposition-
based MaOEAs are characterized by systematically generating
uniformly distributed normalized weight vectors or reference
points. These approaches search for Pareto optimal solutions
along each reference vector or reference point. The repre-
sentative designs include MOEA/DD [10], NSGA-III [9], and
RPD-NSGAII [29].

However, the decomposition-based MaOEAs have to main-
tain an exponentially increasing number of search directions
given the increasing number of objectives. The decomposition-
based approaches often show high sensitivity to the shape of
PF [30], especially for those MaOPs with degenerative PFs.
In addition, there exists an infinite number of possible shapes
of PF surface in high-dimensional objective space. Without
a priori knowledge of PF hyper-surface, it is very difficult to
generate high quality reference solutions for MaOPs.

3) Indicator-Based Approaches: The indicator-based
approaches adopt accurate or estimated indicator values to
guide the search process for solving MaOPs. This category
includes HypE [11] and IBEA [31].

However, the indicator-based MaOEAs do have their own
issues. First, the computational cost is very expensive for the
exact hypervolume calculation. Second, the indicator-based
MaOEAs encounter difficulties to generate a set of uniformly
distributed solutions. Third, it remains a challenge to select the
most appropriate reference points for various indicator-based
MaOEAs.

4) Objective Reduction Approaches: The objective reduc-
tion approaches consist of finding the relevant objectives and
eliminating the redundant objectives. Typical representatives
are PCSEA [12], L-PCA, and NLMVU-PCA [32].

However, these methods can reduce the computational load
but potentially lose some information as a result of the
reduced objectives. Moreover, such techniques are only appli-
cable to problems having a moderate number of conflicting
objectives.

5) Evolution Strategy-Based Approaches: The ES
approaches apply the self-adaptive mutation mechanism for
solving MaOPs. Specifically, niching or archive maintenance
methods are integrated to maintain well diverse solutions.
Some popular designs in this category are S3-CMA-ES [13],
PAES [20], and SMES [33]. In particular, ES is simpler to
implement, it is easier to scale in a distributed setting, and
it has fewer hyperparameters to control. This outcome is
no surprise because ES resembles simple hill climbing in
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a high-dimensional space-based only on finite differences
along a few random directions at each step [34].

However, most of these approaches still need to maintain
a large population size for sorting, selection, and reproduc-
tion, and, as a result, suffer from extremely high computa-
tional complexity largely due to the excessive successes of
the GA applications; evolutionary strategy has lost its early
attention in the community.

B. Motivation

Generally, when the number of objectives increases, existing
MaOEAs have to face the following challenges.

1) The number of incomparable, nondominated solu-
tions increases enormously in the dominance resis-
tance phenomenon [35], [36]; these solutions seriously
weaken the selection pressure toward the PF.

2) In order to obtain a set of well-diversified solutions
that approximates the entire PF, some of the MaOEAs
need to keep the extreme solutions to extend the bound-
ary. However, without any prior PF shape knowledge,
it is very difficult to identify the extreme or boundary
solutions [37].

3) In order to approximate the high-dimensional PF sur-
face, some of the MaOEAs have to maintain a very large
population size, which inadvertently led to expensive
computational cost [38].

4) Some of the MaOEAs show high sensitivity to the
shape of PF (e.g., decomposition-based approaches are
sensitive to degenerate PF [30]).

5) Some of the MaOEAs heavily rely upon the availabil-
ity of high-quality reference points. However, without
a priori position and shape knowledge of PF hypersur-
face, it is very difficult, if not impossible, to generate
high quality reference solutions for a given MaOPs.

Inspired by the Vector Equilibrium phenomenon in mag-
netic fields, isotropic magnetic particles would automatically
repel each other, naturally preserve uniform distance from the
nearest neighbors, and extend the entire magnetic fields as
far as possible. In this article, we present an ES for solving
MaOPs, called MaOES, which can address these challenges
listed above efficiently and effectively.

The proposed algorithm imitates the Vector Equilibrium
phenomenon of isotropic magnetic particles, which apply a
self-adaptive mutation mechanism to guide the individuals to
keep uniform distance and extension to approximate the entire
PF automatically. The MaOES can obtain a well-converged
and well-diversified PF with much less population size, as
shown in Fig. 1.

As can be seen from Fig. 1, given different population
sizes (30, 50, and 100), MaOES can obtain well-distributed
solutions to cover the entire PF, and each individual keeps uni-
form distance from nearest neighbor solutions. The larger the
number of individuals, the sharper the contour of the resulted
approximate PF will be preserved.

III. PROPOSED ALGORITHM

In this section, the details of the proposed ES MaOEA are
presented. Two main procedures are iteratively run for each

Fig. 1. Resulted approximate PFs by MaOES with different population sizes
(30, 50, and 100) on three-objective WFG1.

Fig. 2. (a) SBX distributions with different parameter n. (b) Gaussian
distributions with different parameter σ .

individual, specifically the Precision-Controllable Mutation
operator and the Maximum Extension Distance strategy.
The Precision-Controllable Mutation operator is designed
for both exploration and exploitation given the designated
precision. The Maximum Extension Distance strategy imi-
tates the isotropic magnetic particles in magnetic fields which
guide individuals to maintain uniform distance and extension
to approximate the entire PF automatically. The compu-
tational complexity of the proposed algorithm is O(MP2),
where M denotes the number of objectives, and P is the
population size. This is comparable to most state-of-the-art
MaOEA designs.

A. Precision-Controllable Mutation Operator

Let x = [x1, x2, . . . , xN]T be one of the individuals, and
the xi is the ith decision variable of x. It is important
to exploit the local region near x, and explore the global
region distant away from x as well. Traditional mutation
operator [39] adopts Gaussian perturbation to generate the
mutated candidate solution x′

i, as shown in (2)

x′
i = xi + N(0, σ ). (2)

However, the Gaussian distribution is similar to simulated
binary crossover (SBX) [40], which generates the offspring
near their parent with a high probability, which is only
effective for local search, as shown in Fig. 2.

In addition, the Gaussian probability density function has
the parameter σ , which is very difficult to be assigned an
optimal value. Within limited iteration steps, larger σ value can
assure a higher search precision, but slower convergence. On
the other hand, smaller σ value can facilitate a quick conver-
gence, but lower search precision. For the WFG instances, all
the decision variables are in different ranges xi ∈ [0, 2i], which
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poses a much difficult task to assign an optimal value of σ

specifically suited for all the decision variables simultaneously.
In this article, a simple and efficient Precision-Controllable

Mutation operator is proposed for exploration and exploitation,
as shown in (3)–(8)

x′
i = xi + �α (3)

x′
i = xi − �α (4)

where

�α = 1

10Random(p)+1
× (Random(9) + 1)

x′
i = xi + �β (5)

x′
i = xi − �β (6)

where

�β = xi × �α−xi

x′
i = xi + �γ (7)

x′
i = xi − �γ (8)

where

�γ = xi ÷ �α−xi.

Equations (3) and (4) are designed for exploitation, while (5)
to (8) are intended for exploration. The variable p is the param-
eters to control the search precision in the decision space.
Function Random(p) can generate a pseudorandom number
in the range of 0 to p − 1. If the required search precision is
0.001, the parameter p can be set to be 3. The value of random
number Random(p) should be in the set of {0, 1, 2}, then the
corresponding value of [1/(10Random(p)+1)] will be in the set
of {0.1, 0.01, 0.001}. The value of (Random(9) + 1) can be
regarded as a random coefficient from 1 to 9. Obviously, these
mutation equations can generate all the neighboring solutions
within the required minimum precision of 0.001.

As an illustrated example, we randomly generate the
mutated solution x′

i about 5000 times to test the exploitation
ability of (3) and (4). For example, let the original value of
xi be 10, the frequency distribution of mutated xi is shown in
Fig. 3(a) and (b), given the parameter p is set to be 1 and 2,
respectively. Please note the addition and subtraction operators
are chosen at equal probability. The frequency distribution of
newly generated mutated solutions is shown in Fig. 3.

In Fig. 3(a) the parameter p is set to be 1, Random(p)
produces a 0, (3) and (4) can generate mutated individual
from 9.1 to 10.9 with precision 0.1 of uniform frequency. In
Fig. 3(b) the parameter p is set to be 2, Random(p) should be
0 or 1, (3) and (4) can generate uniform spreading mutated
solutions near original xi = 10 in precision 0.1 and 0.01.

Equations (5)–(8) can generate new individuals greater than
�β times or less than �γ times of the original xi, which
could be considered exploration the decision space far away
from xi. For example, let xi be 10, and the parameter p is
set to be 1, Random(p) should be 0. We generate mutated x′

i
5,000 times randomly, the frequency distribution is shown in
Fig. 4. Equations (7) and (8) can generate mutated solutions
with uniform frequency, the value of mutated x′

i become 1 to
10 time more than or less than xi.

Fig. 3. Frequency distribution of mutated x′
i with different parameter p.

(a) xi = 10, p = 1, new generated solution x′
i with (3) and (4). (b) xi = 10,

p = 2, new generated solution x′
i with (3) and (4).

Fig. 4. Value distribution of mutated x′
i with (7) and (8).

Apparently, addition and subtraction mutation operators can
generate a small variation �α from its original value, which
is useful for local search. On the other hand, division and
multiplication mutation operators could generate greater than
�β times or less than �γ times away from the original
value, which is useful for global search to jump out of the
local optimal. The pseudocode of the Precision-Controllable
Mutation is given in Algorithm 1.

B. Maximum Extension Distance Strategy

Since the PF of MaOPs is a high-dimension hypersurface,
without any priori PF shape knowledge, it is very difficult to
identify boundary solutions for MaOPs. In 1917, Buckminster
Fuller discovered the significance of the full vector symmetry
in the magnetic fields and called it, the Vector Equilibrium
in 1940 [21], [22]. Inspired by the Vector Equilibrium phe-
nomenon, isotropic magnetic particles would repel each other
and extend the entire magnetic fields as far as possible.
From an energy perspective, the Vector Equilibrium represents
the ultimate and perfect condition wherein every isotropic
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Algorithm 1 Precision-Controllable Mutation

Input: P(i)
t , p=10

Output: NewP(i)
t , x′

i is the ith decision variable of NewP(i)
t

1: for i = 1 to N

2: x′
i = xi

3: r = Random(6)

4: �α = 1
10Random(p)+1 × (Random(9) + 1)

5: �β = xi × �α−xi

6: �γ = xi ÷ �α−xi

7: if r = 0 then xTemp = xi + �α

8: else if r = 1 then xTemp = xi − �α;
9: else if r = 2 then xTemp = xi + �β;

10: else if r = 3 then xTemp = xi − �β;
11: else if r = 4 then xTemp = xi + �γ ;
12: else if r = 5 then xTemp = xi − �γ ;
13: end if
14: if xTemp is feasible then x′

i = xTemp
15: end for

(a) (b) (c)

Fig. 5. Isotropic magnetic particles repel each other and expand the boundary
automatically. (a) Initial state. (b) Repel each other. (c) Equilibrium state.

magnetic particle keeps uniform distance from the nearest
neighbors, as shown in Fig. 5.

In our algorithm, we propose the Maximum Extension
Distance strategy to imitate the isotropic magnetic particles
behaving in magnetic fields, which guide individuals to pre-
serve uniform distance and extension to approximate the entire
PF automatically. The Maximum Extension Distance is defined
in (9)

MED
(

P(i)
t

)
= NearDist

(
P(i)

t

)
× TotalDist

(
P(i)

t

)
(9)

where

NearDist
(

P(i)
t

)
= min

j,j�=i

M∑

m=1

∣∣∣f (i)
m − f (j)

m

∣∣∣.

TotalDist
(

P(i)
t

)
=

P∑

j=1

M∑

m=1

∣∣∣f (i)
m −f (j)

m

∣∣∣.

In this equation, P(i)
t is the ith individual in Population

Pt at the tth generation. TotalDist(P(i)
t ) calculates the sum-

mation of Manhattan distance (MD) between P(i)
t and P(j)

t .
A greater value of TotalDist(P(i)

t ) implies the solution P(i)
t

has moved away from other individuals. NearDist(P(i)
t ) cal-

culates the minimum MD between P(i)
t and P(j)

t . A greater
value of NearDist(P(i)

t ) implies a better individual diversity.
The proposed Maximum Extension Distance strategy is the

Fig. 6. Maximum Extension Distance to expand the boundary solution.

Fig. 7. Maximum Extension Distance to keep good diversity.

product of NearDist() and TotalDist(). The greater the max-
imum extension distance implies an individual has extended
the overall boundary, and an individual has obtained a better
diversity.

For example, the Maximum Extension Distance can expand
the boundary solution. Let A be an individual in the popula-
tion, and Anew is the new candidate solution after mutation
operation, as shown in Fig. 6.

The Maximum Extension Distance is calculated as follows:

MED(A) = NearDist(A) × TotalDist(A)

NearDist(A) = MD(AB)

TotalDist(A) = MD(AB)+MD(AC)+MD(AD)+MD(AE)

+MD(AF)

MED(Anew) = NearDist(Anew) × TotalDist(Anew)

NearDist(Anew) = MD(AnewB)

TotalDist(Anew) = MD(AnewB)+MD(AnewC)+MD(AnewD)

+MD(AnewE)+MD(AnewF)

MED(Anew) > MED(A).

Compared with the original solution A, both NearDist() and
TotalDist() of Anew are greater than those of A. Since the
Maximum Extension Distance, MED(Anew), is greater than
the value of MED(A), the individual A should be replaced by
the new candidate solution Anew. Obviously, Anew extends the
whole population boundary and extends individual distance far
away from other individuals.

For another example, B is an individual in the population,
and Bnew is a new candidate solution after mutation operation,
as shown in Fig. 7.

The Maximum Extension Distance is calculated as follow:

MED(B) = NearDist(B) × TotalDist(B)
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Algorithm 2 Maximum Extension Distance
Input: the index of mutation individual idx
Output: maximum extension distance MED

1: TotalDist = 0;
2: NearDist = +8;
3: for i = 1 to P
4: if i = idx then continue;
5: Dist = 0;
6: for j = 1 to M
7: Dist = Dist + abs(f (i)

j − f (idx)
j );

8: end for
9: TotalDist = TotalDist + Dist;

10: if Dist < NearDist then NearDist = Dist;
11: end for
12: MED = NearDist × TotalDist;

NearDist(B) = MD(BC)

TotalDist(B) = MD(BA)+MD(BC)+MD(BD)+MD(BE)

+MD(BF)

MED(Bnew) = NearDist(Bnew) × TotalDist(Bnew)

NearDist(Bnew) = MD(BnewA)

TotalDist(Bnew) = MD(BnewA)+MD(BnewC)+MD(BnewD)

+MD(BnewE)+MD(BnewF)

MED(Bnew) < MED(B).

Although TotalDist() of Bnew are greater than B, NearDist()
of Bnew is far less than that of B. Smaller NearDist() means
B has moved closer to other individuals, the diversity would
be degenerated. Since the Maximum Extension Distance
MED(Bnew) is less than the value of MED(B), individual B
should not be replaced by the candidate solution Bnew. The
time complexity of Maximum Extension Distance strategy is
O(MP). The pseudocode is given in Algorithm 2.

C. Overall Algorithm

For a given MaOP, a population of randomly sampled indi-
viduals are generated. At each generation, the proposed ES
adopts the Precision-Controllable Mutation operator to every
individual in each decision variant.

Let P(i)
t be the ith original solution in population Pt, and

NewP(i)
t be the mutated new solution of P(i)

t . If NewP(i)
t dom-

inate P(i)
t , the new mutated solution would replace the original

one. If NewP(i)
t is dominated by P(i)

t , the new mutated solution
would be neglected.

If NewP(i)
t and P(i)

t are nondominated with respect to each
other, our algorithm would compare the numbers which other
solutions in the population that dominate P(i)

t or NewP(i)
t . Let

DomCount(P(i)
t ) be the function that calculate the number of

other solutions dominate P(i)
t , the computational complexity is

O(MP). If the function value of NewP(i)
t become smaller than

the value of P(i)
t , that is, less solutions can dominate NewP(i)

t ,
the proposed algorithm would accept the new mutated solu-
tion. If the value of DomCount(NewP(i)

t ) become equal to the
value of P(i)

t , our algorithm would continue to compare the
value of Maximum Extension Distance.

If the value of Maximum Extension Distance
MED(NewP(i)

t ) is greater than MED(P(i)
t ), the new mutated

Algorithm 3 Proposed MaOES Algorithm
Input:
Output:

1: Initialization Pt, t = 0
2: while ( t < maximum generation )
3: for i = 1 to P
4: NewP(i)

t = Precision-Controllable Mutation (P(i)
t )

5: Objective Function Calculation (NewP(i)
t )

6: if (NewP(i)
t ≺ P(i)

t ) then
7: P(i)

t = NewP(i)
t

8: else if (NewP(i)
t ⊀ P(i)

t ) and (P(i)
t ⊀ NewP(i)

t ) then
9: if DomCount(NewP(i)

t ) < DomCount (P(i)
t ) then

10: P(i)
t = NewP(i)

t
11: elseif DomCount(NewP(i)

t ) = DomCount (P(i)
t ) then

12: if MED(NewP(i)
t ) > MED(P(i)

t ) then
13: P(i)

t = NewP(i)
t

14: end if
15: end if
16: end if
17: end for
18: end while

solution is better than the original one, and would replace
it. Otherwise, we should eliminate the new solution. The
computational complexity of the overall algorithm is O(MP2).
The pseudocode is given in Algorithm 3.

IV. EXPERIMENTAL RESULTS

In order to validate the proposed MaOES, we compare its
performance with some state-of-the-art representatives from
different categories of MaOEAs, including NSGA-III [9],
MOEA/DD [10], GrEA [7], HypE [11], RPD-NSGAII [27],
S3-CMA-ES [13], MyO-DEMR [24], NMPSO [23], and
onebyone EA [25]. In the comparison, these algorithms
are evaluated on 16 scalable benchmark instances in
WFG [41] and DTLZ [42] suites. These MaOPs contain
different problem characteristics, such as convex, concave,
disconnected, linear, and degenerated. We perform 30 inde-
pendent runs for each algorithm on each test instance and the
maximum evaluation is set to 10 000.

For the proposed MaOES, the SBX and the polynomial
mutation have been adopted for real-coded GAs. For a fair
comparison, the population size is set to 200, SBX distribu-
tion index is set to 20, polynomial mutation distribution index
is set to 20, crossover probability is set to 1.0, and mutation
probability is set to 1/N, where N denotes the number of deci-
sion variables. The other variable parameters of the compared
algorithms are adopted as suggested in the original papers,
including [7], [9]–[11], [13], [23]–[25], and [27].

For each benchmark instance, 10 000 true PF solutions
(i.e., PF true), are generated by PlatEMO [43] to evaluate the
inverted generational distance (IGD) [44]. The IGD indicator
measures the distance between the true PF and the closest
individual in the obtained solutions. The indicator can be
expressed as

IIGD =
(∑|PF|

i=1 d2
i

)1/2

|PF| (10)
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TABLE I
AVERAGE IGD VALUES OVER 30 RUNS ON UNCONSTRAINT DTLZ AND WFG BENCHMARK INSTANCES (POPULATION SIZE 200), WHERE THE BEST

MEAN FOR EACH INSTANCE IS SHOWN WITH A GRAY BACKGROUND

where di is the Euclidean distance between the ith solution in
the true PF and the closest individual in the obtained solutions.
As a matter of fact, the lower the IGD value is, the better
approximate solution set is obtained.

To facilitate the experiments, we have implemented the
algorithm in the object Pascal language and developed a
graphical user interface (GUI) under the Delphi XE7 platform.
The GUI and MaOES algorithm source code are available

Authorized licensed use limited to: Zhiwei Xu. Downloaded on September 28,2021 at 04:12:03 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 8. Experimental results for three-objectives benchmark problems on
unconstraint DTLZ suite by MaOES (population sizes 100). (a) DTLZ1.
(b) DTLZ2. (c) DTLZ3. (d) DTLZ4. (e) DTLZ5. (f) DTLZ6. (g) DTLZ7.

in the following website: https://github.com/MaOEA/MaOES.
Interested readers can retrieve the code and validate the
performance on his/her own.

A. Performance on DTLZ Problems

The IGD values obtained by the ten competing algorithms
are given in Table I. One can easily notice that MaOES per-
forms significantly better than those of competing MaOEAs
on DTLZ1, DTLZ6, and DTLZ7 with respect to all consid-
ered numbers of objectives. For DTLZ2, MOEA/DD obtains
a better IGD value on the eight-dimension instances while
MaOES shows better results with the other DTLZ2 instances.
For DTLZ4, MOEA/DD and onebyone EA obtain better IGD
values on the 3-objective instance and 5-objective instance,
respectively, and MaOES has the best performance when the
number of objectives is more than 5. For DTLZ5, S3-CMA-
ES and onebyone EA outperform other MaOEAs in almost
all DTLZ5 instances, while MaOES wins 3. From 28 test
instances of the DTLZ benchmark problems, it is clear that
MaOES is the best optimizer as it wins in 22 instances. Thus,
from the empirical results on DTLZ1–DTLZ7 test problems,
we find that MaOES outperforms other compared MaOEAs.

The results demonstrate the ability of the proposed MaOES
to deal with MAOPs characterized by linear, concave, degen-
erated, and discontinues PFs. For example, given the three-
objective DTLZ instances, 100 nondominated solutions over
5,000 generations can be seen in Fig. 8.

Fig. 9 shows the corresponding parallel coordinates of
the solutions of MaOES on 10-D DTLZ test instances. In
comparison with parallel coordinates of true PF sampled by
PlatEMO. As can be seen in Fig. 9, MaOES has a good con-
vergence on DTLZ1-DTLZ4, and DTLZ7. However, MaOES
have a poor population convergence on ten-dimension DTLZ5
and DTLZ6. In the DTLZ6 of Fig. 8, some individuals already
have obtained good convergence and distribution PF ranging
from 0 to 1. Please note that DTLZ5 has a nondegenerate part
of the PF, although DTLZ5 has often been used as MaOP with
degenerate PFs. Because of the effectiveness of Maximum

Fig. 9. Solution sets obtained by MaOES and true PF on the ten-objective
DTLZ test suite through parallel coordinates.

Extension Distance strategy, MaOES obtain good coverage for
all DTLZ test instances, and almost uniformly contribution to
all ten objectives.

B. Performance on WFG Problems

As can be seen from Table I, MaOES has better IGD means
values than the other MaOEAs in all WFG1, WFG3, and
WFG4 instances. For WFG2, WFG5, and WFG8, NMPSO
obtains better IGD values on the 10-objective instances and
MaOES shows better results with all the remaining instances.
For WFG7 and WFG9, GrEA obtains better IGD values on the
8-objective instances, while NMPSO has the best performance
on the 10-objective instances. For WFG6, GrEA obtains better
IGD values on the 8-objective and 10-objective instances, and
MaOES shows better results with the other WFG6 instances.

Authorized licensed use limited to: Zhiwei Xu. Downloaded on September 28,2021 at 04:12:03 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: ES-BASED MaOEA THROUGH VECTOR EQUILIBRIUM 9

Fig. 10. Experimental results for three-objectives benchmark problems
on unconstraint WFG suite by MaOES (population sizes 100). (a) WFG1.
(b) WFG2. (c) WFG3. (d) WFG4. (e) WFG5. (f) WFG6. (g) WFG7.
(h) WFG8. (i) WFG9.

From the 36 WFG problem instances, MaOES wins in
27 instances which clearly show the ability of the proposed
MaOES to deal with MaOPs characterized by mixed convex
and concave, disconnected convex, degenerated and con-
cave PFs.

For example, given the three-objective WFG instances, the
final nondominated solutions over 5,000 generations can be
seen in Fig. 10. Fig. 10(a) shows the proposed algorithm
can find well-convergent and well-diversified solutions on
mixed convex and concave PF for WFG1. As can be seen
from Fig. 10(b), our algorithm obtains a proper distribu-
tion among solutions for WFG2 with disconnected convex
PF. Fig. 10(c) shows our MaOES can obtain quality con-
vergence and uniform solutions that lie on the degenerated
WFG3. Fig. 10(d)–(j) show that the MaOES obtain sets of
good distributed solutions that cover the whole concave PFs
for WFG4-WFG9.

Fig. 11 shows the corresponding parallel coordinates of the
solutions of MaOES on ten-objectives WFG test instances. In
comparison with parallel coordinates of true PF sampled by
PlatEMO. As can be seen in Fig. 11, MaOES has a good
convergence on eight WFG test instances (i.e., WFG1 and
WFG3-WFG9). In addition, our proposed algorithm obtains
a uniform coverage for each objective, largely due to the
effective design of Maximum Extension Distance strategy.
However, MaOES fails to cover the region on the first three
objectives for WFG2, and there are no solution distributed in
the second objective ranging from 2 to 4 for WFG8.

Fig. 11. Solution sets obtained by MaOES and true PF on the ten-objective
WFG test suite through parallel coordinates.

Fig. 12 shows the corresponding parallel coordinates of the
solutions of five state-of-the-art MaOEAs along with the PFs
on ten-dimension DTLZ1, DTLZ7, WFG3, and WFG4 test
instances, which characterized by linear, discontinues, degen-
erated, and concave PFs.
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Fig. 12. Solution sets obtained by MaOES, GrEA, MOEA/DD, NSGAIII, HypE, and true PF on the ten-objective DTLZ1, DTLZ7, WFG3, and WFG4 through
parallel coordinates.

As can be seen in Fig. 12(a), the true DTLZ1 PF ranging
from 0 to 0.5. MaOES has a good convergence PF rang-
ing from 0 to 1, the other four algorithms show an inferior
convergence, with its solution set ranging from 0 to around
180, 50, and 80, respectively. The results of the discontinues
DTLZ7 instance is shown in Fig. 12(b), MaOES performs well
on convergence and coverage within the DTLZ7 PF. However,
MOEA/DD and HypE fail to cover the region on almost all
ten objectives, and GrEA and NSGA-III obtain poor diversity
on the first nine objectives.

From Fig. 12(c), MaOES and HypE perform well on con-
vergence and coverage, and MaOES obtains more uniform
distribution in all ten objectives. The other three algorithms
show an inferior convergence on the degenerated WFG3 PF. In
Fig. 12(d), all the algorithms have good convergence on the
WFG4 concave PF. The MaOES, GrEA and NSGA-III can
reach on all the objectives, however, MOEA/DD and HypE fail
to cover the region on two different objectives and five differ-
ent objectives, respectively. Moreover, the solutions of MaOES
and GrEA can spread over the whole range for each objective.

In contrast, MOEA/DD and NSGAIII obtain very few lines
distributed around the middle section on all the objectives.

From 64 test instances of the DTLZ and WFG benchmark
problems, it is clear that MaOES is the best optimizer as it
wins 56 instances against NMPSO, wins 59 instances against
S3-CMA-ES and onebyoneEA, wins 60 instances against
GrEA, wins 61 instances against HypE, wins 62 instances
against MyO-DEMR and RPD-NSGAII, and wins 63 instances
against NSGA-III. Thus, from the empirical results on DTLZ
and WFG test problems, we find that MaOES outperforms
other compared MaOEAs.

C. Performance on Different Population Size

The MaOES need not maintain a large population size,
since the Maximum Extension Distance can guide the individ-
uals to maintain uniform distances from the nearest neighbors
and extend the entire objective space automatically. In fact,
the MaOES can efficiently obtain quality converged and
diversified solutions which cover the entire true PF with
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Fig. 13. Experimental results for selected benchmark functions with different
population sizes by MaOES (i.e., 4, 10, 30, and 50).

various population sizes (i.e., 4, 10, 30, and 50) as shown
in Fig. 13.

V. CONCLUSION

In this article, we proposed an ES for solving MaOPs based
on ES. The algorithm imitates the isotropic magnetic particles,
which automatically repel each other and extend the entire
magnetic fields as far as possible. In the proposed algorithm,
an efficient self-adaptive Precision Controllable Mutation oper-
ator was designed for individuals to explore and exploit the
decision space. In addition, the Maximum Extension Distance
strategy was designed to guide individuals to keep uniform
distances and extension to approximate the entire PF auto-
matically. The MaOES can obtain a well-converged and
well-diversified PF with much less population size and far
lower computational complexity. The larger the number of
individuals, the sharper the contour of the approximate PF
will be.

The performance is compared against nine different
categories of state-of-the-art MaOEAs, including GrEA,

NSGA-III, MOEA/DD, HypE and RPD-NSGAII, S3-CMA-
ES, MyO-DEMR, NMPSO, and onebyone EA. The exper-
imental results show that MaOES provides the best IGD
measure, and the performance of the proposed algorithm is
significantly better than the chosen competing MaOEAs on
DTLZ and WFG with 3–10 objectives. The results demon-
strate the ability of our MaOES to deal with the problems
characterized by linear, concave, mixed convex and concave,
disconnected convex, and degenerated MaOPs.

Compared with the existing MaOEAs, our algorithm has
satisfactorily addressed several challenges.

1) Since every mutated new solution x’ needs only compare
with its original individual x, there is no selection pres-
sure and dominance resistance problem in our algorithm.

2) In our algorithm, individuals like isotropic magnetic
particles, would repel from each other, and keep uni-
form distance from the nearest neighbors. Our MaOES
can obtain well-diversified solutions without explicit
diversity preservation scheme.

3) The proposed Maximum Extension Distance strategy
is the product of NearDist() and TotalDist(). The greater
the maximum extension distance implies an individual
has extended the overall boundary and better individual
diversity. Our MaOES can extend to approximate the
entire PF automatically without explicitly identifying or
keeping the boundary or extreme solutions.

4) The overall computational complexity of one genera-
tion of MaOES is equal to O(MP2). In addition, the
experimental results show that the MaOES needs only
very little population size to obtain a well-converged
and well-diversified PF. The larger the number of indi-
viduals, the sharper the contour of the approximate PFs
will be.

5) MaOES requires no reference points or sensitive param-
eters, and the experimental results show that MaOES
is very robust to deal with linear, concave, mixed
convex and concave, disconnected convex, and degen-
erated MaOPs.

6) Given the required search precision, the Precision-
Controllable Mutation operator can generate a new
mutated solution for both exploration and exploitation
efficiently. The Precision-Controllable Mutation opera-
tor can improve the efficiency and eliminate unnecessary
computational cost.
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